期刊文献+

关于基于Delta-序列的密度估计的大偏差的一个注记(英文)

A NOTE ON THE LARGE DEVIATIONS FOR A TEST OF SYMMETRY BASED ON DELTA-SEQUENCE DENSITY ESTIMATOR
下载PDF
导出
摘要 本文研究了基于一个delta -序列和一列独立同分布且取值于R随机变量的非参数密度估计的对称检验问题,用经验过程的方法,得到了相应的量满足大偏差原理,推广了文献[3]的结果. In the paper, we study the symmetry test for the non-parametric density estimator based on a delta-sequence and a sequence of independent and identically distributed random variables taking values in R. The large deviations principle for the corresponding statistics are obtained by empirical approach, which extends the results of ref [3].
出处 《数学杂志》 CSCD 北大核心 2009年第4期413-418,共6页 Journal of Mathematics
基金 Supported by the foundation of the Hubei Provincial depart ment of education(B20091107)
关键词 对称检验 delta-序列 大偏差原理 Symmetry tests delta-sequencer large deviations principle
  • 相关文献

参考文献9

  • 1Gine E. , Guillou A. , Rates of strong uniform consistency for multivariate kernel density estimators [J], Annales de L'institut Henri Poincare probailites et Statistiques, 2002,38 (6)..907-921.
  • 2Osmoukhina A. V. , Large deviations probabilities for a test of symmetry based on kernel density estimator[J], Statistics and Probability Letters, 2001,54(3):383-371.
  • 3Berrahou N. ,Large deviations probabilities for a symmetry test statistic based on delta-sequence density estimation[J], Statistics and Probability Letters, 2008,78 (2):238-248.
  • 4Gao Fuqing, Moderate deviations and Large deviations for kernel density estimators[J], Journal of Theoretical Probability, 2003,16(2):5401-418.
  • 5Gine E. , Guillou A. , On consistency of kernel density estimators for randomly censored data: Rates of holding uniformly over adaptive intervals[J], Annales de L'institut Henri Poincare probailites et Statistiques, 2001,37 (4) : 503-522.
  • 6Talagrand M. , New concentration inequalities in product spaces[J], Invention of Math. , 1996,126: 505-563.
  • 7Nolan D. , Pollard D. , U-processes: Rates of convergence[J], Annals of Statistics, 1987, 15(2): 780-799.
  • 8Ellis R. S. , Large deviations for a general class of random vectors[J], Annals of Probability, 1984, 12(1) : 1-12.
  • 9Sion M. , On general minimax theorem[J], Pacific Journal of Mathematics, 1958,8(2) : 171-176.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部