期刊文献+

Besov空间上的算子插值定理(英文)

AN INTERPOLATION THEOREM OF OPERATORS ON CERTAIN BESOV SPACES
下载PDF
导出
摘要 本文研究了算子的插值问题.利用Riesz-Thorin定理的证明方法,并运用Daubechies小波得到了Besov空间上的线性算子的插值定理. In this paper, we consider the interpolation of operators. Following the method presented in the proof of the Riesz-Thorin theorem, we apply Daubechies wavelets to establish the interpolation theorem of linear operators on certain Besov spaces.
作者 杨占英
出处 《数学杂志》 CSCD 北大核心 2009年第4期441-444,共4页 Journal of Mathematics
基金 Supported by Natural Science Foundation of South-Central University for Nationalities(YZZ08004)
关键词 算子插值定理 BESOV空间 小波 interpolation theorem of operators Besov spaces wavelets
  • 相关文献

参考文献6

  • 1Cheng Mingde, Deng Donggao, Long Ruitin. Real Analysis[M]. Beijing:Higher Education Press, 1993.
  • 2Miao Changxing. Harmonic Analysis and Its Applications in Partial Differential Equations (2nd ed. ) [M]. Beljing:Science Press, 2004.
  • 3Rudin W.. Real and Complex Analysis(3rd ed. )[M]. NewYork: McGraw-Hill, 1987.
  • 4Daubechies I.. Orthonormal Bases oI Compactly Supported Wavelets[J]. Comm. Pure and Appl. Math., 1988, 41(7): 909-996.
  • 5Triebel H.. Theory of Function Spaces[M]. Basel: Birkhauser Verlag, 1983.
  • 6Yang Qixiang. Wavelets and Distribution[M]. Beijing: Beijing Science and Technology Press, 2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部