期刊文献+

鞅极大算子的加权弱型不等式(英文)

WEIGHTED WEAK TYPE INEQUALITIES FOR MARTINGALE MAXIMAL OPERATOR
下载PDF
导出
摘要 本文研究了极大算子M满足一类弱型不等式时权函数应具备的条件.利用极大算子的弱(1,1)不等式和Young不等式,证明了权函数对(u,v)此时为AΦ,Ψ权,推广了Ap,p权的理论. In this paper, we research conditions on weights such that the maximal operator M satisfies a kind of weak type inequalities. By use of weak (1,1) inequality of M and Young's inequality, we prove the (u,v) are AФ,ψ weights, which is an extension of Ap,p weights.
出处 《数学杂志》 CSCD 北大核心 2009年第4期454-458,共5页 Journal of Mathematics
基金 Supported by the Nation Natural Science Foundation of China(10371093)
关键词 极大函数 权函数 YOUNG函数 martingale maximal function weight Young function
  • 相关文献

参考文献8

  • 1Long Ruilin. Martingale spaces and inequalities[M]. Beijing : Peking University Press, 1993.
  • 2Kokilashvili V. , Krbec M. Weighted inequalities in Lorentz and Orlicz spaces[M]. Singapore: World Scientific, 1991.
  • 3Pick L. Two-weight weak type maximal inequalities in Orliez classes[J]. Studia Math. , 1991, 100 (3):207-218.
  • 4Weisz F. Martingale Hardy spaces and their spplications in Fourier analysis[M]. Berlin: Springer Verlag, 1994.
  • 5Liu Peide. Martingales and geometry in Banach spaces[M]. Beijing: Science Press, 2007.
  • 6Gallardo D. Weighted weak type integral inequalities for the Hardy-littlewood maximal operator[J]. Israel J. Math., 1989, 67(1): 95-108.
  • 7Kita H. On maximal functions in Orlicz spaces[J]. Proc. Amer. Math. , 1996, 124(10):3019-3025.
  • 8Rao M. M. , Ren Z. D. Applications of Orlicz spaces[M]. New York: Marcel Dekker, Inc. , 1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部