期刊文献+

一种基于维纳滤波去除语音通信中混响的方法 被引量:7

A Means Based on Wiener Filtering for Dereverberation in Speech Communication
下载PDF
导出
摘要 简要叙述了语音通信中去混响的意义.利用常规通话起始语音的习惯特点,提出了预存起始纯净语音信号,并基于维纳滤波原理,通过反卷积运算求出房间冲击响应,再通过反卷积去除语音信号混响的新方法.对语音样本的仿真试验表明,该方法对单字语音的去混响效果良好,在普通计算机上每字的去混响运算耗时为0.3-0.5 s. This paper mentioned briefly the significance of dereverberation in speech communication. The habitual greeting words of usual talk are utilized in obtaining room impulse response function. Other words in the talk are then de-reverberated by de-convolution with the obtained room response function through Wiener filtering. Implementation of the means word by word to speech samples from speech library demonstrates a satisfying dereverberation effect, with the average time cost about 0. 3 to 0. 5 s per word on ordinary computer.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第6期949-952,共4页 Journal of Shanghai Jiaotong University
关键词 去混响 维纳滤波 反卷积 语音通信 dereverberation Wiener filtering deconvolution speech communication
  • 相关文献

参考文献5

  • 1Bees D, Blostein M, Kabal P. Reverberant speech enhancement using cepstral processing [C]//IEEE ICASSP-91. Tronto, Canada: IEEE, 1991:977-980.
  • 2Petropulu A P, Nikias C L N. Blind deconvolution using signal reeonstruetion from partial higher order cepstral information [J]. IEEE Trans on Signal Processing, 1993, 41(6) : 2088-2095.
  • 3Laurent C. Blind deconvolution for multi-microphone speech [C]//Proc 3rd IEEE Benelux Signal Processing Symposium ( SPS-2002 ). Leuven, Belgium: IEEE, 2002:1-4.
  • 4Daly M J, Reilly J P. Blind deconvolution using bayesian methods with application to the derevervberation of speech [C]//IEEE ICASSP. Hamilton, Canada: IEEE, 2004:1009-1012.
  • 5杨晓军,翁正新,田作华.一类H_∞线性连续时变反卷积滤波器[J].上海交通大学学报,2005,39(S1):149-153. 被引量:1

同被引文献36

  • 1赵贤宇,王作英.用于语音识别的鲁棒自适应麦克风阵列算法[J].清华大学学报(自然科学版),2004,44(10):1433-1436. 被引量:5
  • 2罗日成,李卫国,李成榕.基于阵列信号处理的变压器内局部放电源多目标定位方法[J].电网技术,2006,30(1):65-69. 被引量:30
  • 3吴佳栋,陈光冶.语音信号去混响原理与技术[J].电声技术,2006,30(5):63-67. 被引量:9
  • 4苏先礼,何培宇.一种改进的基子波束形成和复倒谱滤波的语音去混响方法[J].通讯和计算机(中英文版),2005,2(8):50-55. 被引量:1
  • 5Bees D, Blostein M, Kabal P. Reverberant speech enhancement using cepstral processing[C]//Internatlonal Conference on Acoustics, Speech, and Signal Processing ICASSP. Washington DC: IEEE Computer Society, 1991 : 977-980.
  • 6Douglas S C, Sawada H, Makino S. Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters [J]. IEEE Transactions on Speech and Audio Processing, 2005,13 ( 1 ) : 92-104.
  • 7Oppenheim A V, Schafer R W. Digital signal processing [M]. NJ,USA:Prentice Hall Inc, 1975.
  • 8BEES D,BLOSTEIN M,KABAL P.Reverberation Speech Enhancement Using Cepstral Processing//IEEE ICASSP-91[C].Toronto,Canada:IEEE,1991:977-980.
  • 9ZIOMAEK L.Fundamentals of Acoustic Field Theory and Space-Time Signal Processing[J].Boca Raton.FL:CRC Press,1995:210-249.
  • 10BAKIR J,SAAD T,Blind Adaptive Dereverberation of Speech Signals Using a Microphone Array[J].Georgia institute of Technology Center for Signal and Image Processing Atlanta,2004(06):47-56.

引证文献7

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部