期刊文献+

应用关联规则筛选疾病相关的SNP位点及其组合的分析方法 被引量:12

Analysis Method to Apply Association Rules in SNP Screening of Disease-related Locus and its Combination
下载PDF
导出
摘要 目的探讨应用关联规则(association rules)挖掘技术筛选对疾病表型相关的基因SNP位点的分析方法。方法应用关联规则挖掘技术,从中国肺癌病例对照研究的核苷酸切除修复通路(nucleotide exicision repair,NER)基因SNP位点筛选与肺癌有关联的SNP位点及其组合,作为logistic回归模型的待选解释变量作进一步确认性研究。结果发现与肺癌易感性可能相关的基因变异位点,并且发现位点ERCC1-rs3212951和ERCC1-rs3212955之间可能存在交互作用。结论关联规则挖掘技术可以作为疾病相关的SNP位点及交互作用的初筛手段,有效地找到肺癌等复杂性状疾病相关的基因多态位点和交互作用项。 Objective To explore the association rules analysis method to find the relationship of diseases and genetic variation data. Methods Association rules mining technology was applied to find the genetic variation locus and/or interactions related with disease phenotype. We discussed how to choice non-redundant rules set, and how to use the locus appeared in these rules to generate a logistic model. The method was illustrated with a real SNP data. Results We found the interaction effect of ERCC1-rs3212951 and ERCC1-rs3212955 may be involved with the lung cancer susceptibility. Conclusion Association roles analysis method can be applied in the high-flux SNP dataset to fred the genetic variation locus and/or interactions related with diseases.
出处 《中国卫生统计》 CSCD 北大核心 2009年第3期226-228,233,共4页 Chinese Journal of Health Statistics
基金 973课题的资助(编号2002CB512902)
关键词 关联规则 基因变异 SNP位点 肺癌 Association rules Gene variation SNP locus Lung cancer
  • 相关文献

参考文献8

  • 1Zhang H, Cai B. The impact of tobacco on lung health in China. Respirology,2003,8 : 17-21.
  • 2Hu ZB, Shao MH, Yuan J, et al. Polymorphisms in DNA damage binding protein 2 (DDB2) and susceptibility of primary lung cancer in the Chinese: a case-control study. Carcinogenesis ,2006,27 (7) : 1475-1480.
  • 3Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev, Cancer,2001,1:22-33.
  • 4Moore JH, Ritchie MD. The challenges of whole-genome approaches to common diseases. JAMA,2004,291 : 1642-1643.
  • 5Agrawal R, Mannila H, Srikant R, et al. , Fast discovery of association rules. Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park,CA, 1996:307-328.
  • 6彭斌,杨忠,李辉智,易东.应用关联规则挖掘构建人小脑发育的基因表达关联网络[J].中国卫生统计,2007,24(2):117-119. 被引量:2
  • 7屠康,喻辉,郭政,李霞.GO功能类与基因差异表达的关联规则挖掘算法[J].生物化学与生物物理进展,2004,31(8):705-711. 被引量:3
  • 8Nicolas P, Rafik TI, Yves B, et al. Generating a Condensed Representation for Association Rules. Journal of Intelligent Information Systems, 2005,24( 1 ) :29-60.

二级参考文献29

  • 1[1]Ramsay G. DNA chips: state-of-the art. Nature Biotechnology,1998. 16 (1): 40 ~44
  • 2[2]Butte A J, Ye J, Neideffellner G. Determining significant fold differences in gene expression analysis. Pacific Symposium on Biocomputing, Hawaii, 2001
  • 3[3]Mariani T J, Budhraja V, Mecham B H, et al. A variable fold change threshold determines significance for expression microarrays.FASEB J, 2003, 17 (2): 321 ~323
  • 4[4]Smyth G K, Yang Y H, Speed T. Statistical issues in cDNA microarray data analysis. Meth Mol Biol, 2003, 224:111 ~136
  • 5[5]Draghici S, Khatri P, Martins R, et al. Global functional profiling of gene expression. Genomics, 2003, 81 (2): 98 ~ 104
  • 6[6]Zhou X, Kao M C. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA, 2002,99 (20): 12783 ~ 12788
  • 7[7]Ashburner M, Ball C. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25(1): 25 ~29
  • 8[8]Rison S C, Hodgman T C, Thornton J M. Comparison of functional annotation schemes for genomes. Funct Integr Genomics, 2000, 1(1): 56 ~69
  • 9[9]Lennon G G, Auffray C. The I. M. A. G. E. Consortium: An integrated molecular analysis of genomes and their expression.Genomics, 1996, 33 (1): 151 ~152
  • 10[10]Benson D, Karsch M. GenBank. Nucleic Acids Research, 2003,31 (1):23~27

共引文献3

同被引文献103

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部