期刊文献+

六种基因表达谱数据筛选差异表达基因方法的比较 被引量:4

Comparison of Six Methods of Screening Differentially Expressed Genes for Gene Expression Profiles
下载PDF
导出
摘要 目的比较SAM方法、Bonferroni校正法、BH法等6种基因表达谱数据筛选差异表达基因的方法,探讨了各种方法的筛选效果。方法采用6种待比较的方法处理不同样本量和方差条件下的模拟数据,比较筛选结果与模拟设定的差异,计算相应的考核指标,探讨6种方法筛选差异表达基因的效果。结果Bonferroni校正法、Sidak校正法和Hochberg法可将FWER、FDR控制在很低的水平,但是筛选出的差异表达基因数比较少;成组t检验方法筛选的差异表达基因数最多,但是不能有效地控制FWER、FDR水平,筛选出的差异表达基因假阳性数过多;相同样本量和方差条件下,SAM方法和BH法筛选差异表达基因数、假阳性数、FWER和FDR均相差不大,均筛选出较多的差异表达基因,且控制了多重检验错误率。结论SAM方法适用于基因表达谱数据筛选差异表达基因的数据分析。 Objective To compare the efficiency of the SAM,Bonferroni adjustment method, BH procedure, et al, six kinds of screening differentially expressed genes methods. Methods Six methods were used to analyze the simulated data with different sample size and vari ance. The results were compared with the simulated initialization, and the assessing indexes were calculawA to compare the efficiency. Result Bonferroni adjustment method, Sidak adjustment method and Hchberg method can Control FWER and FDR at a very low level,but the number of screening differentially expressed genes of the three methods was small. The number of screening differentially expressed genes of t-test was the largest, but the false positive number was the largest, too. The t-test can't control FWER and FDR effectively. There was little difference in the number of screening differentially expressed genes, the false positive number, FWER and FDR between SAM and BH procedure on the same sample size and vafiance conditions. The two methods can not only screen more differentially expressed genes, but also control multiple test error rates. Conclusion The SAM was suitable to screen differentially expressed genes for gene expression profiles.
出处 《中国卫生统计》 CSCD 北大核心 2009年第3期250-254,共5页 Chinese Journal of Health Statistics
基金 陕西省科技计划项目(2008K04-02) 国家自然科学基金资助项目(39900126) 陕西省自然科学基金资助项目(2003F11)
关键词 基因表达谱 基因组信息学 SAM 多重检验 FWER FDR pFDR Gene expression profile Genome informatics SAM, Multiple test FWER FDR pFDR
  • 相关文献

参考文献17

  • 1Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol,2003,4(4) :210.
  • 2赵发林,刘艳,李康.六种差异基因筛选方法及筛选效果的比较.2007年中国卫生统计学术大会论文集.西安:84-92.
  • 3王璐,荀鹏程,赵纯,沙家豪,陈峰.差异表达驱动的微阵列数据降维策略[J].中国卫生统计,2007,24(4):375-377. 被引量:2
  • 4方积乾.基因表达谱的统计分析.2007年中国卫生统计学术大会论文集.西安:1-4.
  • 5蒋定锋,潘娟娟,赵耐青.差异表达基因筛选方法的比较[J].中国卫生统计,2006,23(5):417-420. 被引量:7
  • 6贺宪民 ,武建虎 ,贺佳 ,XIANG Zhaoying .小样本情况下差异表达基因鉴别的参数统计分析[J].中国卫生统计,2005,22(3):141-145. 被引量:10
  • 7吴骋,贺佳,贺宪民,付旭平.cDNA微阵列实验分析中常用的统计方法[J].国外医学(生物医学工程分册),2004,27(5):305-309. 被引量:3
  • 8Eft-on B, Tibshirani R. Empirical bayes methods and false discovery rates for microarrays. Genet Epidemiol,2002 ,23 (1) : 70-86.
  • 9Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Prec Natl Acad Sci USA, 2001,98(9) : 5116-5121.
  • 10Chu G,Narasimhan B ,Tibshirani R,et al. SAM "Significance Analysis of Microarrays" users guide and technical document. Available on the World Wide Web at: www-stat.stanford. edu/- fibs/SAM/sam. pdf. Last date visited: 2007-10-29.

二级参考文献40

  • 1荀鹏程,赵杨,柏建岭,易洪刚,于浩,陈峰.微阵列数据的多重比较[J].中国卫生统计,2006,23(1):5-8. 被引量:12
  • 2荀鹏程,赵杨,易洪刚,柏建岭,于浩,陈峰.Permutation Test在假设检验中的应用[J].数理统计与管理,2006,25(5):616-621. 被引量:38
  • 3Yang YH, Speed T. Design issues for cDNA microarray experiments [J]. Nat Rev Genet, 2002, 3(8): 579-588.
  • 4Olga Troyanskaya, Michael Cantor, Gavin Sherlock ,et al. Missing value estimation methods for DNA microarray[J]. Bioinformatics, 2001,17(6): 520-525.
  • 5Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data [J]. Journal American Statistical Association, 2002, 97(457): 77-87.
  • 6Ripley BD. Pattern Recognition and Neural Networks[M]. Cambridge:Cambridge University Press, 1996.
  • 7Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140.
  • 8Breiman L. Arcing classifiers[J]. The Annals of Statistics, 1998, 26(3): 801-849.
  • 9Mangasarian OL. Mathematical programming in data mining[J]. Data Mining and Knowledge Discovery, 1997, 1(2): 183-201.
  • 10Terrence S Furey, Nello Cristianini, Nigel Duffy, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics, 2000, 16: 906-914.

共引文献16

同被引文献61

  • 1涂承媛,曾衍钧,李树信.房颤心电信号的分形维分析[J].中国生物医学工程学报,2005,24(2):163-166. 被引量:1
  • 2荀鹏程,赵杨,柏建岭,易洪刚,于浩,陈峰.微阵列数据的多重比较[J].中国卫生统计,2006,23(1):5-8. 被引量:12
  • 3蒋定锋,潘娟娟,赵耐青.差异表达基因筛选方法的比较[J].中国卫生统计,2006,23(5):417-420. 被引量:7
  • 4Schotten U, Ausma J, Stellbrink C, et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation [ J ]. Circulation, 2001, 103 ( 5 ) :691-698.
  • 5Nattel S. New ideas about atrial fibrillation 50 years[ J]. Nature, 2002, 415(6868 ) :219 - 226.
  • 6Benjamin EJ, Wolf PA, D' Agostino RB, et al. Impact of atrial fibrillation on the risk of death the Framingham Heart Study[ J]. Circulation, 1998, 98 (10) :946 - 952.
  • 7Ho KK, Pinsky JL, Kannel WB, et al. The epidemiology of heart failure: the Framingham Study [ J ]. Journal of the American College of Cardiology, 1993, 22(4sl ):A6 -A13.
  • 8Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham study [ J ]. Stroke, 1991 , 22(8) :983 -988.
  • 9Kim YH, Lee JH, Lim DS, et al. Gene expression profiling of oxidative stress on atrial fibrillation in humans[ J]. Experimental and Molecular Medicine, 2003, 35(5 ) :336 - 349.
  • 10Ohki- Kaneda R, Ohashi J, Yamamoto K, et al. Cardiac function-related gene expression profiles in human atrial myocytes [J]. Biochemical and Biophysical Research Communications, 2004, 320 (4) : 1328 - 1336.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部