期刊文献+

一种新的盲源分离拟开关算法 被引量:4

A new quasi switching algorithm for blind source separation
下载PDF
导出
摘要 针对电子战中各种信号混叠严重难以分离的现象,在盲源分离开关算法基础上提出一种新的盲信源分离拟开关算法.该算法引入单位对称加权滑动向量来加权每次迭代所得的分离信号作为源信号,用峭度取代原算法的峭度符号位作为判断函数来自适应选择加权相应激活函数,以此优化学习算法,结合信号分选的具体应用,给出了迭代结束的评判方法.计算机仿真实验表明,在强噪声背景影响下,该算法能够更加有效地分离空间未知多源线性混叠信号,且在分离效果、稳定性、处理速度和抗噪性能上都比原算法有较大改进. A new quasi switching algorithm for blind source separation (BSS) was developed that resolves difficulties in the separation of all kinds of seriously mixed signals in an electronic warfare (EW) environment. The algorithm first introduces a unit symmetrical sliding weighted vector to weight estimated signals after iteration as source signals. It uses signal kurtosis to replace a symbol bit for kurtosis as a judging function to adaptively choose and weight the corresponding activation function. This gives a new judging method which was used to judge the finishing time of iteration in signal sorting. Computer simulation results showed that, under the influence of strong background noise, the novel algorithm can be more effective in unknown multi-source separation of linear mixed signals than the original algorithm. In addition, separation efficiency, stability, process capacity and anti-noise performance were greatly improved relative to the original algorithm.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第6期703-707,共5页 Journal of Harbin Engineering University
基金 国防基础科研基金资助项目(A2420061104-06)
关键词 盲源分离 峭度 拟开关算法 多源分离 激活函数 blind source separation kurtosis quasi switching algorithm multi-source separation activation function
  • 相关文献

参考文献7

  • 1COMON P. Independent component analysis [ J ]. A New Concept Signal Processing, 1994, 36(3) :287-314.
  • 2BELL A J, SEJNOWSKI T J. An information maximization approach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995,7 (6) : 1004-1159.
  • 3LEE T W. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [ J ]. Neural Computation, 1999,11 (2) :409-433.
  • 4牛龙,马建仓,王毅,陈海洋.一种新的基于峰度的盲源分离开关算法[J].系统仿真学报,2005,17(1):185-188. 被引量:20
  • 5孙政,赵知劲,吴杰.一种峭度宽松开关盲分离算法[J].杭州电子科技大学学报(自然科学版),2007,27(1):33-37. 被引量:3
  • 6AMRI S, CICHOCKI A. Adaptive blind signal processingneural network approaches [ J ]. Proceedings of the IEEE, 1998, 86(10) :2026-2046.
  • 7CARDOSO A S. Blind source separation-semi-parametric statistical approach[ J ]. IEEE Trans on Signal Processing, 1997,45 ( 11 ) :2692-2700.

二级参考文献16

  • 1牛龙,马建仓,王毅,陈海洋.一种新的基于峰度的盲源分离开关算法[J].系统仿真学报,2005,17(1):185-188. 被引量:20
  • 2Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995, 7 (6): 1004-1159.
  • 3Lee T W. Independent component analysis using an extended infomax algorithm for mixed subgaussion and supergaussion sources[J]. Neural Computation, 1999, (11): 417-441.
  • 4Amri S, Cichocki A. Adaptive blind signal processing--neural network approaches[J]. Proceedings of the IEEE, 1998, 86(10):2026-2046.
  • 5Cichocki A. On-lone adaptive algorithms in nonstationary environments using a modified conjugate gradient approach[A]. In:Proc. IEEE Workshop Neural Networks for Signal Processing[C].1997, 316-325.
  • 6Amari S. Stability analysis of adaptive blind source separation[J].Neural Network, 1997, 10 (8): 1345-1351.
  • 7Comon P. Independent component analysis, a new concept[J]. Signal Processing, 1994, 36:287-314.
  • 8Amari S, Cardoso. Blind source separation--semi-parametric statistical approach[J]. IEEE Trans. on Signal Processing, Dec. 1997,45(11): 2692-2700.
  • 9Girolami M. An alternative perspective on adaptive independent component analysis algorithms[J]. Neural Computation, 1998, 10:2103-2114.
  • 10Comon P. Independent component analysis[ J]. A new concept Signal Processing, 1994,36(3) :287 - 314.

共引文献20

同被引文献29

  • 1张淑宁,赵惠昌,熊刚.基于延时变化量估计的伪码引信抗欺骗式干扰方法[J].宇航学报,2008,29(1):326-330. 被引量:13
  • 2孙守宇,郑君里,吴里江,赵莹.峭度自适应学习率的盲信源分离[J].电子学报,2005,33(3):473-476. 被引量:11
  • 3熊波,李国林,路翠华.基于二阶统计量的无线电引信信号盲分离[J].探测与控制学报,2007,29(2):54-57. 被引量:2
  • 4Bell A J, Sejnowski T J. An Information maximization approach to blind separation an blind dee.onvolution[J]. Neural computation, 1995,7 (6): 1004-1034.
  • 5Amari S ,Ciehoeki A, Yang H H. A new learning algorithm for blind signal separation [M] Advanees in Neural Information Processing System Cambridge. MA:MIT Press, 1996:757-763.
  • 6J.-F. Cardoso. Blind signal separation: statistical principles[I]. Procee- dings of the IEEE, voL 9, pp. 2009 - 2025, Oct. 1998.
  • 7Te-Won L Girolami M, Sejnowski T J. Independent component analysis using an extended Infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural computation, 1999,11,417-44 I.
  • 8Dengpan Gao,Jinwen Ma,Qiansheng Cheng. An alternative switching criterion for independent component analysis (ICA) [J]. Neurocompufing, 2005,68: 267-272.
  • 9Yunfeng Xue, Yujia Wang.Jie Yang. Independent component analysis based on gradient equation and kernel density estlmation[J]. Neurocomputing,2009,72: 1597-1604.
  • 10Michael Zibulevsky. Blind source separation using relative newton method combined with smoothing method of multipliers[C]. CCIT Report 2005,556.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部