期刊文献+

基于支持向量预选取的支持向量域故障预报 被引量:2

Support vector domain fault prediction based on support vector pre-extracting
原文传递
导出
摘要 针对两种支持向量域模型分别分析了支持向量的分布特性,在此基础上从训练集中选取具有一定几何特征的向量构建预测模型.这些特征向量的预选取在不影响支持向量域的故障预报能力的前提下,大大减少了训练样本,提高了支持向量域的训练效率.仿真实验表明了该方法的有效性和可行性. Aiming at the two kinds of support vector domian models, the support vector's distribution characteristics are analyzed. On this basis, the prediction models are constructed by the vectors with some special geometrical character extracted from the training set. The pre-extracting method of the suppor vectors greatly reduces the training samples and speeds up the training speed of support vector domain, at the same time, the fault prediction ability is well maintained. The simulation results show the effectiveness and feasibility of the method.
出处 《控制与决策》 EI CSCD 北大核心 2009年第7期985-989,995,共6页 Control and Decision
基金 国家自然科学基金重点项目(60736026) 教育部新世纪优秀人才支持计划项目
关键词 支持向量域 支持向量预选取 故障预报 Support vector domain Support vector pre-extracting Fault prediction
  • 相关文献

参考文献10

  • 1张正道,胡寿松.基于未知输入观测器的非线性时间序列故障预报[J].控制与决策,2005,20(7):769-772. 被引量:6
  • 2Zhang L B, Wang Z H, Zhao S X. Short-term fault prediction of mechanical rotating parts on the basis of fuzzy-grey optimizing method[J].Mechanical Systems and Signal Processing, 2007, 21(2): 856-865.
  • 3Manel Martinez-Ramon, Jose Luis Rojo-Alvarez, Gustavo Camps-Vails, et al. Support vector machines for nonlinear kernel ARMA system identification [J].IEEE Trans on Neural Networks, 2006, 17(6) : 1617- 1622.
  • 4Jose Luis Rojo-Alvarez, Manel Martinez-RamOn, Mario de Prado-Cumplido, et al. Support vector method for robust ARMA system identification[J]. IEEE Trans on Signal Processing, 2004, 52(1): 155-164.
  • 5Shi Z W, Han M. Support vector echo-state machine for chaotic time-series prediction[J]. IEEE Trans on Neural Networks, 2007, 18(2): 359-372.
  • 6Hyoung-joo Lee, Sungzoon Cho. Focusing on non- respondents: Response modeling with novelty detectors [J].Expert Systems with Applications, 2007, 33(2): 522-530.
  • 7Tran Quang Anh, Li Xing, Duan Haixin. Efficient performance estimate of one-class support vector machine[J]. Pattern Recognition Letters, 2005, 26(8): 1174-1182.
  • 8David M J Tax, Robert P W Duin. Support vector data description[J]. Machine Learning, 2004, 54: 45-66.
  • 9Manuel Davy, Frederic Desobry, Arthur Gretton, et al. An online support vector machine for abnormal events detection[J]. Signal Processing, 2006, 86 (8) : 2009- 2025.
  • 10Jaewook Lee, Daewon Lee. Dynamic characterization of cluster structures for robust and inductive support vector clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1869-1874.

二级参考文献6

  • 1Ho S L, Xie M. The Use of ARIMA Models for Reliablity Forecasting and Analysis[J]. Computers and Industrial Engineering, 1998, 35(1, 2):213-216.
  • 2Zhang Q H. Adaptive Observer for MIMO Linear Time-Varying Systems[J]. IEEE Trans on Automatic Control, 2002, 47(3):525-529.
  • 3Anas F, Olivier S. An Unknown Input Observer Design for Linear Time-Delay Systems[A]. Proc of the 38th IEEE Conf on Decision and Control[C]. USA, 1999: 4223-4227.
  • 4Xiong Y, Saif M. Unknown Disturbance Inputs Estimation Based on a State Function Observer Design[J]. Automatica, 2003,39: 1389-1398.
  • 5Jaime Moreno. Unknown Input Observers for SISO Nonlinear Systems[A]. Proc of the 39th IEEE Conf on Decision and Control[C]. Australia, 2000: 790-795.
  • 6Yang H L, Saif M. Monitoring and Diagnostics of a Class of Nonlinear Systems Using a Nonlinear Unknown Input Observer[A]. Proc of the 1996 IEEE Conf on Control Applications[C]. Dearborn, 1996: 1006-1011.

共引文献5

同被引文献27

  • 1张庆,徐光华,王晶,梁霖.基于支持向量域描述的多故障诊断动态模型[J].西安交通大学学报,2007,41(5):593-597. 被引量:12
  • 2Tax D, Duin R. Support Vector Data Description[J]. Machine Learning, 2004, 54(1):45-66.
  • 3Vapnik V N. The Nature of Statistical Leaming Theory [M]. Berlin: Springer - Verlag , 1995.
  • 4Munoz- Marl J, Bmzzone L, Camps -Vails G. A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images [J ]. IEEE Transaction on Geosciences and Remote Sensing, 2007, 45 (8) : 2683 -2692.
  • 5Bu H G, Wang J, Huang X B. Fabric Defect Detection Based on Multiple Fractal Features and Support Vector Data Description [ J ]. Engineering Applications of Artificial Intelligence, 2009, 22(2) : 224 -235.
  • 6Lee S W, Park J Y, Lee S W. Low Resolution Fecv Recognition Based on Support Vector Data Description[J-. Pattern Recognition, 2006, 39(9) :1809 -1812.
  • 7Kim P J, Chang H Y Jin, Song D S, et al. Fast Support Vector Data Description Using K - means Clustering. Lecture Notes in Computer Science. Berlin : Springer, 2007 : 506 - 514.
  • 8Tax D, Juszczak P. Kernel Whitening for One - Class Classification[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2003, 17(3): 333-347.
  • 9Asuncion A, Newman D J. UCI Machine Learning Repository. [2010 -3 -20]. http://www, its. uci. edu/- mlearn/MLRepository, html.
  • 10Rtlping S. SVM classifier estimation from group probabilities[C]. Proc of 27th ICML, Haifa, 2010: 911- 918.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部