期刊文献+

Sigma-Point直接式卡尔曼滤波惯性组合导航算法 被引量:10

Sigma-Point direct Kalman filtering algorithm for inertial integrated navigation system
原文传递
导出
摘要 基于西格玛点采样加权的方法,以姿态、速度和位置等9个导航参数为状态向量,以卫星导航系统的速度和位置组成6维观测向量,构建直接式卡尔曼滤波器,融惯性导航系统求解和状态估计的过程为一体,直接描述系统导航参数动态过程.仿真结果验证了惯性组合导航Sigma-Point直接式滤波方法的有效性,表明该非线性直接式滤波方法可提高惯性组合导航系统的导航精度和对飞机、导弹等载体非线性机动过程的适应性. A nonlinear Kalman filter with direct structure for inertial integrated navigation system is proposed based on weighted Sigma-Points samples. The direct filter takes attitude, velocity and position as state vectors with the order number of 9. And the observation vector contains 3 velocity and 3 position provided by global navigation satellites system. The filter fuses the solving of INS mechanization in navigation frame and the process of state estimation, and directly describes the dynamic process of navigation parameters of the system. GPS/INS direct filtering simulation results show the effectiveness of the proposed method which can improve the navigation accuracy and the fitness to the nonlinear maneuver of airbornes or missiles.
出处 《控制与决策》 EI CSCD 北大核心 2009年第7期1018-1022,共5页 Control and Decision
基金 国家自然科学基金项目(60804058) 航空科学基金项目(20070852009 20080852012)
关键词 惯性组合导航 西格玛点卡尔曼滤波 直接式滤波 Inertial integrated navigation Sigma-Point Kalman filtering Direct filtering
  • 相关文献

参考文献10

  • 1Rudolph van der Merwe, Eric A Wan. Sigma-Point Kalman filters for probabilistic inference in dynamic state-space models [C]. Workshop on Advances in Machine Learning. Montreal, 2003: 1-27.
  • 2Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems [J]. Automatica, 2000, 36(11): 1627-1638.
  • 3Dunik J, Simandl M, Straka O, et al. Performance analysis of derivative-free filters[C].Proc of the 44th IEEE Conf on Decision and Control, and the European Control Conf 2005. Seville, 2005: 1941-1946.
  • 4Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proe of the IEEE, 2004, 92 (3) : 401-422.
  • 5齐国元,陈增强,袁著祉.非线性系统智能状态估计研究进展与展望[J].控制理论与应用,2003,20(6):813-818. 被引量:7
  • 6段方,刘建业,李荣冰.基于平淡卡尔曼滤波器的微小卫星姿态确定算法[J].上海交通大学学报,2005,39(11):1899-1903. 被引量:12
  • 7WuYX, HuDW, WuMP, etal. UnscentedKalman filtering for additive noise case: Augmented versus nonaugmented[J].IEEE Signal Processing Letters, 2005, 12(5): 357-360.
  • 8Kraft E. A quaternion-based unscented Kalman filter for orientation tracking[C]. Proc of the Sixth Int Conf of Information Fusion. Cairns, 2003.. 47-54.
  • 9Wang Q, Rizos C, Li Y, et al. Application of a Sigma- Point Kalman filter for alignment of MEMS-IMU[C]. 2008 IEEE/ION Position, Location and Navigation Symposium. Monterey, 2008: 44-52.
  • 10Schubert R, Mattern N, Wanielik G. Chemnitz an evaluation of nonlinear filtering algorithms for integrating GNSS and inertial sensor[C]. 2008 IEEE/ ION Position, Location and Navigation Symposium. Monterey, 2008: 25-29.

二级参考文献61

  • 1李东,李玉芳,金仲和,王跃林.使用太阳电池阵列的皮卫星姿态确定方法[J].光学精密工程,2004,12(z1):87-92. 被引量:12
  • 2王培德,史忠科,张友民,张洪才.非线性滤波与辨识的应用与发展[J].控制理论与应用,1993,10(2):121-128. 被引量:5
  • 3[1]ANDERSON B D O, MOORE J B. Optimal Filtering [ M]. Englewood Cliffs, NJ: Prentice-Hall, 1979.
  • 4[5]BATTIN R E. Astronautical guidance [M]. New York: McCrawHill, 1964:303 - 304.
  • 5[6]CARLSON N. A fast triangular factorization of square root filter[ J ]. The American Institute of Aeronautics and Astronautics ( AIAA), 1973, 11(9): 1259-1265.
  • 6[7]LJUNG L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems [ J]. IEEE Trans on Automatic Control, 1979,24(1):36- 50.
  • 7[8]BIERMAN G J. Measurement updating using the U-D factorization[ J ]. Automatica, 1976,12(3) :375 - 382.
  • 8[9]BIERMAN G J, THORNTON C L. Numerical comparison of Kalman filter algorithms: orbit determination case study [J]. Automatica, 1977, 13( 1 ) :23 - 35.
  • 9[10]OSHMAN Y. Gain-free square root information filter using the spectral decomposition [ J ]. J Guidance Control, and D Dynamics, 1989,12(5): 681-690.
  • 10[12]ZHOU D H, FRANK P M. Strong tracking filtering of nonlinear time-varying stochastic systems with colored noise: application to parameter estimation and empirical robustness analysis [ J ]. Int J Control, 1996,65(2) :295 - 307.

共引文献17

同被引文献87

引证文献10

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部