期刊文献+

热壁条件下油气的热着火现象 被引量:17

Thermal ignition phenomena of gasoline-air mixture induced by hot wall
下载PDF
导出
摘要 设计了高温热壁油气热着火实验系统,对受限空间油气混合气体在热壁条件下的热着火现象进行了实验研究。根据实验结果,详细讨论了油气混合物的着火方式、临界着火温度、着火压力范围以及体积分数、温度的变化规律。实验发现:热壁条件下油气混合物引燃分为油蒸气的热裂解-油气快速氧化反应-油气急速氧化反应3个阶段;油气混合物着火模式为燃烧、热爆燃和热爆炸;油气在汽油自燃点附近开始快速化学反应,热着火临界温度高于汽油自燃点近80K;温度特征曲线在着火时具有突变性质;热壁温度达到783~873K时,存在压力范围为2.2~17.6kPa的三角形油气热着火压力半岛。 A special experiment system was designed to carry out an experimental investigation about gasoline-air mixture ignition phenomena induced by the hot wall in a confined space. According to experimental results, the ignition manner of gasoline-air mixture, the critical ignition temperature and the ignition pressure region and the change laws of concentration, temperature in the course of fire were discussed in detail. It is found that the ignition course of gasoline-air mixture in the confined space is divided into three phases, namely, gasoline steam pyrolysis, oxidation reaction, accelerated oxidation. There are three ignition manners of gasoline-air mixture caused by the hot wall, namely combustion, deflagration, and explosion. Gasoline-air mixture in the confined space starts its rapid chemical reaction at the spontaneous combustion temperature of gasoline. And its ignition temperature is about 80 K higher than spontaneous combustion point of gasoline. Regardless of region of the fire, or other region in the confined space, there is a sudden rise of temperature at the time of ignition. When the temperature of the hot wall reach 773-873 K, there is a triangle pressure peninsula of thermal ignition of gasoline-air mixture, where the ignition pressure region is of 2.2-17.6 kPa
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2009年第3期268-274,共7页 Explosion and Shock Waves
基金 国家自然科学基金项目(50676106)
关键词 爆炸力学 热着火 热壁 油气 mechanics of explosion thermal ignition hot wall gasoline-air mixture
  • 相关文献

参考文献9

  • 1Edenhofer R, Lucka K. Low temperature oxidation of diesel-air mixtures at atmospheric pressure[J].Proceedings of the Combustion Institute, 2007,31(2) : 2947-2954.
  • 2Sato Y, Iwabuehi H, Groethe M, et al. Experiments on hydrogen deflagration[J]. Journal of Power Sources, 2006,159(1) : 144-148.
  • 3Caceres M O, Nicolis G, Budde C E. About the shift between the advanced and delayed thermal explosion times [J]. Chaos, Solitons & Fractals, 1995,6(2) :51-57.
  • 4Okoya S S. Disappearance of criticality in a branched-chain thermal explosion with heat loss[J].Combustion and Flame, 2006,144(3) :410-414.
  • 5Varatharajan B, Williams F A. Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems[J]. Combustion and Flame, 2001,125 (5) : 624-645.
  • 6Varatharajan B, Williams F A. Brief communication ignition times in the theory of branched-chain thermal explosions[J]. Combustion and Flame, 2000,121(4) : 551-554.
  • 7Veser G. Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor[J]. Chemical Engineering Science, 2001,56(4) : 1265-1273.
  • 8EI-Sayed S A. Thermal explosion of autocatalytic reaction[J]. Journal of Loss Prevention in the Process Industries, 2003,16(4):249-257.
  • 9康德拉季耶夫BH.气体化学反应动力学[M].北京:科学出版社,1963:416-417.

同被引文献127

引证文献17

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部