期刊文献+

变时滞随机递归神经网络的全局指数稳定性 被引量:1

Global Exponential Stability of Stochastic Recurrent Neural Networks with Time-varying Delays
下载PDF
导出
摘要 利用自由权值矩阵和不等式分析技巧,研究了一类随机变时滞神经网络的全局指数稳定性问题.该模型中考虑了神经网络的外部随机扰动因素,更加接近真实网络.通过构造适当的Lyapunov-Krasovskii泛函,以线性矩阵不等式形式给出了的全局指数稳定性判据,能够利用Matlab的LMI工具箱很容易地进行检验.此外,仿真结果进一步证明了结论的有效性. By free-weighting matrix and combining the method of inequality analysis, the problem of stochastic exponential stability of a class of stochastic neural networks with time-varying delays is investigated. The external stochastic perturbations are unavoidable to be considered in neural networks. The time-delay factors are unknown and time-varying with known bounds. Based on Lyapunov-Krasovskii functional and stochastic analysis approaches, a new stability criterion is presented in terms of linear matrix inequalities (LMIs) to guarantee the delayed neural network to be exponentially stochastically stable. A numerical example is given to illustrate the usefulness of the proposed exponential stability criterion.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第7期36-39,共4页 Microelectronics & Computer
基金 重庆市科委自然科学基金项目(CSTC 2008BB2199) 重庆市教委资助项目(kj081501 kj071502)
关键词 全局指数稳定性 随机神经网络 LMIS global exponential stability stochastic neural networks LMIs
  • 相关文献

参考文献8

  • 1Blythe S, Mao X, Liao X. Stability of stochastic delay neural networks [ J ]. Journal of the Franklin Institute, 2001,338(4) :481 - 495.
  • 2Liao X, Mao X. Exponential stability and instability of stochastic neural networks [ J ]. Stochastic Analysis and Applications, 1996,14(2) : 165 - 185.
  • 3Wan L, Sun J. Mean square exponential stability of stochastic delayed hopfield neural networks[J].Physics Letters A, 2005,343(4) : 306 - 318.
  • 4Huang H, Feng G. Delay- dependent stability for uncertain stochastic neutral networks with time - varying delay [J]. Physica A, 2007(381) :93- 103.
  • 5Zhang J, Sbi P, Qiu J. Novel robust stability criteria for uncertain stochastic hopfield neural networks with time-varying delays[J ]. Nonlinear Analysis: Real World Applications, 2007,8(4) : 1349 - 1357.
  • 6Hale J K. Theory of functional differential equations[ M]. New York, UK: Spring-Verlag, 1997.
  • 7覃磊,刘文斌,周康.基于神经网络组的空间目标识别的信息融合方法[J].微电子学与计算机,2008,25(8):117-120. 被引量:7
  • 8张蕾,普杰信,范庆辉.一种基于改进BP神经网络的物体识别方法[J].微电子学与计算机,2008,25(4):152-155. 被引量:7

二级参考文献18

共引文献12

同被引文献16

  • 1Chua L O,Yang L. Cellular neural networks:theory[J].IEEE Trans Circ Syst 1,1988.1257-1272.
  • 2Chua L O,Yang L. Cellular neural networks:application[J].IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,1988.1273-1290.
  • 3Cao J D. Global stability analysis in delayed cellular networks[J].Physical Review E,1999.5940-5944.
  • 4Cao J D,Zhou D M. Stability analysis of delayed cellular neural networks[J].Neural Networks,1998.1601-1605.
  • 5Chen A P,Cao J D. Existence and attractivity of almost periodic solutions for cellular neural networks with distributed delays and variable coefficients[J].Applied Mathematics and Computation,2003,(1):125-140.doi:10.1016/S0096-3003(01)00274-0.
  • 6Li X M,Huang L H,Zhu H Y. Global stability of cellular neural networks with constant and variable delays[.J][J].Nonlinear Analysis-Theory Methods and Applications,2003.319-333.
  • 7Huang H,Cao J D,Wang J. Global stability and periodic solutions of recurrent neural networks with delays[J].Physics Letters A,2002.393-404.
  • 8Zhao H Y,Cao J D. New conditions for global exponential stability of cellular neural networks with delays[J].Neural Networks,2005.1332-1340.
  • 9Forti M,Manetti S,Marini M. Necessary and sufficient condition for absolute stability of neural networks[J].IEEE Transactions on Circuits and Systems,1994.491-494.
  • 10Yang T,Yang L B. The global stability of fuzzy cellular neural networks[J].IEEE Trans Circ and Syst Ⅰ,1996.880-883.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部