期刊文献+

基于粒子滤波与自然特征匹配的虚实配准方法 被引量:1

A Registration Method Based on Particle Filter and Natural Feature Matching
下载PDF
导出
摘要 提出了一种基于粒子滤波与多尺度自然特征点匹配相结合的虚实配准方法.该方法具有如下特点:(1)无需向场景中添加任何人为标识即可正常工作;(2)采用系统自适应传递模型以保证系统在摄像机抖动或运动路径突然变化等情况下能有效完成虚实配准;(3)采用简化尺度不变特征变换和尺度预测技术完成特征点匹配.实验结果表明,该方法能适应摄像机抖动、场景部分遮挡、光照以及视点和视角大幅度变化等情况,并适应室内和户外环境,且具有较高的配准精度. A Registration Method based on particle filter and natural feature matching was proposed. The method has following advantages: (1) It can work with arbitrary geometric shapes including planar, near planar and non planar structures which really enhance the usability of AR systems. (2) The adaptive system transfer model was adopted for camera shaking and erratic motion. (3) A simplified scale-invariant features transform and scale prediction technology for completion of feature matching was introduced, which guarantee robustness and stability of the system. Experiment results show that the method can still wok well even under the circumstances of camera shaking, ocdusion and large changes in illumination, viewpoint and view angle during the entire process.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第7期151-155,共5页 Microelectronics & Computer
关键词 增强现实 虚实配准 粒子滤波 尺度不变特征变换 augmented reality registration particle filter scale invariant feature transform
  • 相关文献

参考文献10

  • 1管涛,李利军,王乘.利用单应性矩阵改进ARTOOLKIT三维注册性能[J].微电子学与计算机,2007,24(1):82-84. 被引量:4
  • 2Zhang X, Fronz S, Navab N. Visual marker detection and decoding in AR systems: a comparative study[C]// ISMAR. USA:Princeton, 2002:97- 106.
  • 3Comport A I, Marchand E, Pressigout M, et al. Real-time markerless tracking for augmented reality: the virtual visual servoing framework[J ]. Visualization and Computer Graphics, IEEE Transactions on, 2006,12 (4) : 615 - 628.
  • 4Okuma T, Kurata T, Sakaue K. Fiducial - less 3d object tracking in ar systems based on the integration of top - down and bottom - up approaches and automatic database addition[ C]//ISMAR. New York, 2003: 342 - 343.
  • 5Pupilli M, Calway A. Real - time camera tracking using a particle filter[C]//Proc. British Machine Vision Conference. UK: University of Bristol, 2005.
  • 6Marimon D, Maret Y, Abdeljaoued Y, et al. Particle filter-based camera tracker fusing marker and feature point-based cues[ C] // Proceedings of the IS&T/SHE Electronic Imaging Conference on Visual Communications and Image Processing. USA: California, 2007.
  • 7Sanjeev Arulampalam M, Simon Maskell, Neil Gordon, et al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50(2) : 174 - 188.
  • 8Pupilli M, Calway A. Real - time visual slam with resilience to erratic motion[C]//Proc. Int Conf on Computer Vision and Pattern Recognition. UK: University of Bristol, 2006.
  • 9Rosten E, Drummond T. Machine learning for high-speed comer detection[ C] // European Conference on Computer Vision. UK: Cambridge University, 2006.
  • 10Lowe D. Distinctive image features from scale - invariant keypoints[J]. Journal of Computer Vision, 2004,60(2): 91 - 110.

二级参考文献7

  • 1ARToolKit.http://www.hitl.washington.edu/artoolkit/,2003.2
  • 2Inside ARToolKit.http://ar.in.tum.de/twiki/pub/
  • 3H Kato,M Billinghurst.Marker tracking and hmd calibration for a video-based augmented reality conferencing system,Proc.of 2nd Int.Workshop on Augmented Reality,1999:85~94
  • 4R I Hartley,A Zisserman.Multiple view geometry in computer vision.Cambridge University Press,ISBN:0521623049,2004
  • 5Emanuele Trucco,Alessandro Verri.Introductory techniques for 3D computer vision.Prentice-Hall,1998
  • 6Z Zhang,R Deriche,O Faugeras,Q T Luong.A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry.Artificial Intelligence J.,1995,78:87~119
  • 7M A Fischler,R C Bolles.Random sample consensus:A paradigm for model fitting with applicationsto image analysis and automated cartography.Comm.ACM,1981,24(6):381~395

共引文献3

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部