期刊文献+

贝叶斯网络诱导的内积空间 被引量:1

Inner Product Spaces for Bayesian Networks
下载PDF
导出
摘要 概率模型和核函数相结合的方法是学习系统的热点研究领域,贝叶斯网络是重要的一类概率图形模型。文中主要讨论了变量取值在布尔域上的两类分类任务,重点讨论了几个常见贝叶斯网络诱导的内积空间的最低维数,为解决一些常见的分类问题提供了理论依据。文中通过分析概念类的VC维来确定其欧几里德维数的下界,VC维还可用于估计贝叶斯网络概念类的复杂性和判断概念类的分类性能。 There has been a remarkable interest in learning systems that combine the key advantages of probabilistic models and kernel functions. Bayesian networks are one of the major probabilistic graphical models. We focus on two-label classification tasks over the Boolean domain. Emphasis is put on the lowest dimension of inner product spaces induced by several common cases of Bayesian networks, which serves as a theoretical foundation for the solution of common problems. The lower bounds are obtained by analyzing the VC dimension of the concept class associated with the Bayesian network. VC dimension can also be used to estimate the complexity of the concept class induced by Bayesian networks and judge the performance of the classification of the concept class.
出处 《电子科技》 2009年第7期1-4,8,共5页 Electronic Science and Technology
基金 国家自然科学基金资助项目(60574075)
关键词 贝叶斯网络 内积空间 线性排列 VC维数 欧几里德维数 Bayesian network inner product space linear arrangement VC dimension Euclidean dimension
  • 相关文献

参考文献2

共引文献38

同被引文献11

  • 1Nir Friedman,Dan Geiger,Moises Goldszmidt.Bayesian Network Classifiers[J],1997.
  • 2GUO Y,WILKINSON D,SCHUURMANS D.Maximum margin Bayesian networksProc of thest Conf on Uncertainty in Artificial Intelligence,2005.
  • 3NAKAMURA Atsuyoshi,SCHMITT Michael.Bayesian networks and inner product spacesProceedingsof of theth Annual Conference on Learning Theory,2004.
  • 4Vladimir N Vapnik.Statistical Learning Theory,1998.
  • 5Ben Taskar,Carlos Guestrin,Daphne Koller.Max-margin Markov networksAdvances in Neural Information Proceeding Systems,2004.
  • 6Shai Ben David,Nadav Eiron,Hans Ulrich Simon.Limitation of Learning Via Embeddings in Euclidean Half-spaceJournal of Machine Learning Research,2002.
  • 7W. Johnson,J. Lindenstrauss.Contemp. Math., Vol. 26: Conference in Modern Analysis and Probability, New Haven, Conn., 1982,1984.
  • 8Pearl J.Fusion, propagation and structuring in belief networksArtificial Intelligence,1986.
  • 9Altun Y,Tsochantaridis I,Hofmann T.Hidden Markov Support Vector MachinesProceedings of the th International Conference on Machine Learning (ICML’),2003.
  • 10Maria-Florina Balcan,Avrim Blum,Santosh Vempala.On kernels, margins, and low-dimensional mappingsProceedings of th international Conference on Algorithmic Learning Theory ALT,2004.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部