期刊文献+

深埋隧道层状岩体地应力反演研究 被引量:9

Study on inversion of in-situ stress of layered rockmass in deep buried tunnel
下载PDF
导出
摘要 结合渝沙高速公路共和隧道地应力量测资料,通过调整多种组合的侧压系数,获得隧址区山体多组地应力。将每一组侧压系数下获得的测试段地应力,利用横观各向同性弹塑性本构模型对测试段层状岩体进行计算,并将计算的结果与实测结果对比分析,确定出隧址区山体合理的侧压系数,从而得到了隧道轴线方向的初始地应力大小和方向,研究表明,隧道轴线初始地应力与隧道的埋深和地形地貌有关,靠山侧初始地应力大于靠河侧,最大初始地应力主要集中在埋深500-1 000m,即K41+500-K43+000里程段,最大初始地应力为19.7MPa,与水平面的夹角为-71.58°。这为隧道设计和施工提供了重要的基础资料。 Based on the data of Gonghe tunnel in Yu-Sha express highway, different groups of in-situ stress in the tunnel site region are acquired by adjusting different coefficient combination of horizontal pressure. The in-situ stress of layered rockmass in sections of measurement is calculated by transverse isotmpy elastoplastic model. By comparing the two results, the reasonable coefficient of horizontal pressure in tunnel site region is confirmed and then the magnitude and direction of in-situ stress along the tunnel axes is obtained. The research shows that the in-situ stress along the tunnel axes is related to the buried depth of tunnel and the to stress near the mountain is larger than that near the river. The maximum of in-situ pography, that is, the in-situ stress, which is 19.7MPa, is mainly in the depth from 500m to 1 000m, namely, in the section of K41 + 500 - K43 + 000, and the angle with horizontal is -71.58°. The research provides some fundamental data for tunnel construction and design.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2009年第4期75-79,共5页 Hydrogeology & Engineering Geology
基金 国家创新研究群体基金(50621403) 国家自然科学基金(50704039) 重庆大学研究生科技创新基金(200805B1B0010289)
关键词 深埋隧道 地应力反演 数值模拟 层状岩体 deep buried tunnel inversion of in-situ stress numerical simulation layered rockmass
  • 相关文献

参考文献9

  • 1李青麒.初始应力的回归与三维拟合[J].岩土工程学报,1998,20(5):68-71. 被引量:37
  • 2张玉军,刘谊平.层状岩体的三维弹塑性有限元分析[J].岩石力学与工程学报,2002,21(11):1615-1619. 被引量:33
  • 3铁道第二勘察设计院.渝沙高速公路彭武段工程地质勘察报告[R].成都:铁道第二勘察设计院,2006.
  • 4S1264-2001水利水电工程岩石实验规程[S].
  • 5中国科学院武汉岩土力学研究所.湘渝高速公路彭武段共和隧道C16标段钻孔地应力测量报告[R].武汉:中国科学院武汉岩土力学研究所,2006.
  • 6Jaeger J C.Shear failure of anisotropic rock[J].Geol.Mag.1960,97:65-72.
  • 7刘卡丁,张玉军.层状岩体剪切破坏面方向的影响因素[J].岩石力学与工程学报,2002,21(3):335-339. 被引量:72
  • 8Nova B.The failure of transversely isotropic rocks in triaxial compression[J].Int.J.Rock Mech.Min.Sci.,1980,17(6):325-332.
  • 9Smith B,Cheatham J R B.Anisotropic compacting yield condition applied to porous limestone[J].Int.J.Rock Mech.Min.Sci.,1980,17(3):159-165.

二级参考文献7

  • 1Brady B H G 冯树仁(译).地下采矿岩石力学[M].北京:煤炭工业出版社,1990..
  • 2[1]Serrano A,Olalla C. Ultimate bearing capacity of an anisotropic discontinuousrock mass,part I:basic modes of failure [J]. Int. J. Rock Mech. Min. Sci.,1998,35(3):301~324
  • 3[4]Owen D R J,Hinton E. Finite Elements in Plasticity:Theory and Practice[M]. Swansea:Pineridge Press Limited,1980,215~231
  • 4曾立凡,数值分析,1986年,403页
  • 5团体著者,数学手册,1979年,851页
  • 6张玉军,唐仪兴.考虑层状岩体强度异向性的地下洞室平面有限元分析[J].岩土工程学报,1999,21(3):307-310. 被引量:21
  • 7刘卡丁,张玉军.层状岩体剪切破坏面方向的影响因素[J].岩石力学与工程学报,2002,21(3):335-339. 被引量:72

共引文献130

同被引文献128

引证文献9

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部