期刊文献+

弹簧钢60Si2Mn大方坯凝固组织的数值模拟 被引量:1

Numerical Simulation on Solidification Structure of Cast Bloom of Spring Steel 60Si2Mn
下载PDF
导出
摘要 运用ProCAST软件的CAFE模块对60Si2Mn弹簧钢325 mm×280 mm连铸坯的凝固组织进行模拟,研究了钢水过热度和二冷强度对铸坯凝固组织的影响。结果表明,浇钢过热度从10℃增大到30℃后,铸坯晶粒密度从1.055×10~6m^(-2)减小到1.520×10~5m^(-2),柱状晶显著发达;浇钢过热度同为20℃时,二冷区采用强冷后,晶粒密度从1.009×10~6m^(-2)增加到1.083×10~6m^(-2),等轴晶率增大5%。 Solidification structure of 325 mm × 280 mm cast bloom of spring steel 60Si2Mn has been simulated with CAFE module of ProCAST software to study the effect of liquid superheating extent and secondary cooling intensity on structure of solidification of cast bloom. Results showed that with increasing liquid superheating extent from 10 ℃ to 30 ℃, the density of grain in bloom decreased from 1. 055 × 10^6 m^-2 to 1. 520 × 10^5 m^-2 and the columnar crystal obviously developed ; as liquid superheating extent was 20 ℃ with intensive secondary cooling, the equiaxial crystal zone ratio increased by 5% and the grain density increased from 1. 009 × 10^6 m^-2 to 1. 083 × 10^6 m^-2 .
出处 《特殊钢》 北大核心 2009年第4期33-35,共3页 Special Steel
关键词 弹簧钢 大方坯 凝固组织 钢水过热度 二冷强度 Spring Steel, Bloom, Solidification Structure, Liquid Superheating Extent, Intensity of Secondary Cooling
  • 相关文献

参考文献1

  • 1Ch. -A. Gandin,J. -L. Desbiolles,M. Rappaz,Ph. Thevoz. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures[J] 1999,Metallurgical and Materials Transactions A(12):3153~3165

同被引文献14

  • 1Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science ~ Engineer- ing, 1984, 65(I):75-83.
  • 2WANG C Y, Beckermann C. Prediction of columnar to e- quiaxed transition during diffusion-controlled dendritic alloy solidificationl-J-]. Metall Mater Trans A, 1994, 25 (5): 1081-1093.
  • 3Rappaz M, Gandin C A. Probabilistic modelling of mi- crostrurture formation in solidification processes[-J3. Acta Metall Mater, 1993, 41(21:345-360.
  • 4Gandin C A, Rappaz M, Tintillier R. Three-dimensional probabilistic simulation of solidification grain structures ap- plication to super alloy precision castings[J]. Metall Mater Trans A, 1993, 24(2):467-479.
  • 5Badillo A, Beckermann C. Phase-field simulation of the co- lumnar-to-equiaxed transition in alloy solidification[J]. Ac- ta Materialia, 2006, 54(81:2015-2026.
  • 6Ramirez J C, Beckermann C. Examination of binary alloy free dendritic growth theories with a phase-field model[J]. Acta Materialia, 2005, 53(6) : 1721-1736.
  • 7lgnaszak Z, Hajkowski M, Hajkowski J. Prediction of dendritic microstructure using the cellular automaton-finite element method for hypoeutectic al-si alloys castingsI-JJ. J Materials Science, 2006, 12(2) : 124-128.
  • 8C-andin C A, Desbiolles .1 L, Rappaz M, et al. A three-di- mensional cellular automaton-finite element model for the prediction of solidification grain structuresEJ3. Metall Ma- ter Trans A, 1999, 30(12) :3153-3165.
  • 9Kurz W, Giovanola B, Trivedi R. Theory of microstrue- tural development during rapid solidification[J-]. Acta Met- all Mater, 1986, 34(5) :823-830.
  • 10Kurz W, Fisher D J. Fundaments of Solidification I-M'~. Switzerland.. Trans Tech Publications, 1998: 63.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部