期刊文献+

向量值函数的代数免疫度与非线性度 被引量:1

The Algebraic Immunity and Nonlinearity of Vectorial Boolean Functions
下载PDF
导出
摘要 本文讨论了向量值函数代数免疫度的定义,给出了向量值函数的代数免疫度与其非线性度之间的关系,研究了布尔函数的重量与其代数免疫度之间的关系,利用该关系,给出了达到最大代数免疫度的平衡布尔函数个数的一个下界。 This paper discusses the definition of algebraic immunity of the vectorial Boolean functions, and exhibits the connection between the algebraic immunity and nonliearity of vectorial Boolean functions. We also investigate the relationship between the weight and algebraic immunity of Boolean functions, by which we give a lower bound of the number of balanced Boolean functions which have the maxmal algebraic immunity.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第8期27-29,共3页 Computer Engineering & Science
基金 国防科技大学基础研究基金资助项目(JC08-02-04) 福建师范大学网络安全与密码技术重点实验室开放课题基金资助项目(07A0003)
关键词 布尔函数 向量值函数 代数免疫度 非线性度 Boolean function vectorial Boolean function algebraic immunity nonlinearity
  • 相关文献

参考文献6

  • 1Courtois N, Meier W. Algebraic Attacks on Stream Ciphers with Linear Feedback[C]//Proc of Eurocrypt'03,2003:345- 359.
  • 2Meier W, Pasalic E,Carlet C. Algebraic Attacks and Decom- position of Boolean Functions [C]//Proc of Eurocrypt ' 04, 2004: 474-491.
  • 3Cadet C, Dalai D K, Gupta K C, et al. Algebraic Immunity for Cryptographically Significant Boolean Functions: Analysis and Construction[J]. IEEE Trans on Information Theory, 2006,52(7) :3105-3121.
  • 4Carlet C. A Method of Construction of Balanced Functions with Optimum Algebraic Immunity[EB/OL]. [2006-03-10]. http://eprint. iacr. org.
  • 5Dalai D K, Gupta K C, Maitra S. Results on Algebraic Immunity for Cryptographically Significant Boolean Functions[C]//Proc of INDOCRRYPT'04, 2004: 92-106.
  • 6Armknecht F, Krause M. Constructing Single- and Multi- Output Boolean Functions with Maximal Algebraic Immunity [C]//Proc of ICALP'06,2006 : 180-191.

同被引文献8

  • 1徐春霞,陈卫红.关于代数攻击中代数免疫的若干性质分析[J].微计算机信息,2005,21(12X):69-71. 被引量:2
  • 2孙占高,孙兵,李超.布尔函数的代数免疫性[C]∥2005通信理论与技术新进展-第十届全国青年通信学术会议论文集.北京:北京邮电大学出版社,2005:853-858.
  • 3Courtios N, Meier W. Algebraic attacks on stream ci- phers with linear feedback[ C ]/ /Advances in Cryptolo- gy-EUROCRYPT 2003. Berling: Springer Verlag, 2003:346-359.
  • 4Meier W, Pasalic E, Carlet C. Algebraic attacks and decomposition of Boolean functions[C]//Advances in Cryptology-EUROCRYPT 2004. Berlin: Springer Ver-lag, 2004,3027 : 474-491.
  • 5Crama Y, Hammer P. Boolean Models and Methods in Mathmatic, Computer Science and Engineering [ M]. Cambridge: Cambridge University Press, 2010.
  • 6Armknecht F, Krause M. Constructing single-and multi-output Boolean functions with maximal algebraic immunity[C]//Automata, Languages and Program- ming. Berlin:Springer, 2006:180-191.
  • 7Dalai D K,Gupta K C,Maitra S. Results on algebraic immunity for cryptographically significant Boolean functions[C]//Progress in Cryptology-INDOCRYPT2004. Berlin: Springer, 2004: 92-106.
  • 8Feng K Q,Liao Q Y, Yang J. Maximal values of gen- eralized algebraic immunity[J]. Designs, Codes and Cryptography, 2008, (2) : 243-252.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部