期刊文献+

一种改进的最大频繁项目集挖掘算法 被引量:2

An Improved Maximal Frequent Itemsets Mining Algorithm
下载PDF
导出
摘要 本文提出了一种基于布尔矩阵FP-array的最大频繁项目集挖掘的并行算法。该算法利用基于前缀的划分方法将事务数据集划分为较小的子空间,并将具有完全包含关系的项目集分配到同一处理机,然后各处理机站点Si分别进行局部最大频繁项目集的挖掘,再将挖掘结果传送到主站点S,最后得到全局最大频繁项目集。 An improved parallel algorithm for mining maximal frequent itemsets based on FP-array is proposed in this paper. The algorithm divides the transaction data sets into smaller one based on the prefix, and distributes the itemsets which have the complete include relationship to the same site. Then each site Si mines local maximal frequent itemsets reapectively, and delivers the mining results to the main site S. Finally, the global maximal frequent itemsets are obtained.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第8期63-65,共3页 Computer Engineering & Science
关键词 最大频繁项目集 并行算法 布尔矩阵 maximal frequent itemsets parallel algorithmm FP-array
  • 相关文献

参考文献7

  • 1Bayado R J. Efficiently Mining Long Patterns from Databases [C]//Proc of the 1998 ACM SIGMOD Int'l Conf on Management of Data, 1998 : 85-93.
  • 2Lin D, Kedem Z M. Pineer-Seareh:A New Algorithm for Discovering the Maximum Frequent Set[C]//Proc of EDBT' 98, 1998:105-119.
  • 3Agarwal R C, Aggarwal C C, Prasad V V V. Depth First Generation of Long Pattems[C]//Proc of the 6th ACM SIGMOD Int'l Knowledeg Discovery and Data Mining, 2000 :108-118.
  • 4Agrawal R, Shafer J C. Parallel Mining of Association Rules [J].IEEE Trans on Knowledge and Data Engineering, 1996,8(6): 962-969.
  • 5Schuster A, Wolff R. Communication Efficient Distributed Mining of Association Rules[J].Data Mining and Knowledeg Discovery, 2004,8 (2) : 473-484.
  • 6宋宝莉,覃征.分布式全局频繁项目集的快速挖掘方法[J].西安交通大学学报,2006,40(8):923-927. 被引量:11
  • 7朱玉全,宋余庆,陈耿.关联规则挖掘中增量式更新算法的研究[J].计算机工程与应用,2005,41(15):186-187. 被引量:8

二级参考文献16

  • 1Han J,Kamber M.Data Mining:Concepts and Techniques[M].Beijing: High Education Press,2001.
  • 2Fan Ming,Meng Xiao-feng et al.Data Mining:Concepts and Teehniques[M].Beijing:Mechanical Industrial Press,2001.
  • 3Agrawal R,Srikant R.Fast algorithm for mining association rules[C]. In:Proceedings of the 20th International Conference on VLDB,Santiago,Chile,1994: 487-499.
  • 4Han J,Jian P,Yiwen Y.Mining Frequent Patterns without Candidate Generation[C].In:Proceedings of 2000 ACM SIGMOD International Conference Management of Data,Dallas ,TX ,2000:1-12.
  • 5Cheung D W,Han J,Ng V T et al.Maintenance of discovered association rules in large databases:an incremental updating technique[C]. In:Proe of the 12^th Int Conf on Data Engineering,New Orleans,Louisiana,1996:106-114.
  • 6Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C].In:Proceedings ACM SIGMOD International Conference Management of Date,Washington DC,1993:207-216.
  • 7Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large database[J].SIGMOD Record,1993,22(2):207-216.
  • 8Agrawal R,Srikant R.Fast algorithms for mining association rules in large databases[C]∥Proceedings of the 20th International Conference on Very Large Data Bases.San Mateo,USA:Morgan Kaufmann Publicationg Inc.,1994:487.
  • 9Agrawal R,Srikant R.Parallel mining of association rules[J].IEEE Trans on Knowledge and Data Engineering,1996,8(6):962-969.
  • 10Cheung D W,Han Jiawei,Ng V T,et al.A fast distributed algorithm for mining association rules[C]∥Proceedings of the 1996 4th International Conference on Parallel and Distributed Information Systems.Los Alamitos,USA:IEEE Computer Society,1996:31-42.

共引文献16

同被引文献17

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部