期刊文献+

基于蚁群算法的非结构化P2P信息检索 被引量:2

Unstructured P2P Information Retrieval Based on the Ant Colony Algorithm
下载PDF
导出
摘要 非结构化P2P网络实现简单,是P2P信息共享系统的研究热点,但其存在搜索盲目、检索效率低的不足。针对其存在的问题,本文提出将改进的蚁群算法引入其中,构建了基于蚁群算法的P2P信息检索,使检索总是倾向于有利的方向;同时,有针对性的推荐服务能够减少盲目搜索,进一步提高信息定位效率。仿真结果表明,该系统所采用的信息检索与信息推荐相结合的策略能够有效地提高非结构化P2P信息检索的成功率,降低网络负载。 Unstructured P2P systems are inefficient but more popular. This paper presents a new approach to unstructured P2P information retrieval based on the ant colony algorithm and information recommendation services to improve the search efficiency. The ant colony algorithm is used to make routing decisions, and it makes searches turn to the most favorable direction. Besides, information recommendation services reduce blind searches and raise the file-sharing efficiency. In order to evaluate and validate the new algorithm, a simulated experiment is done. The results show that the new searching algorithm has good performance in the search success rate and load balancing.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第8期99-103,139,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60373080) 福建省自然科学基金资助项目(A0310009)
关键词 非结构化P2P 信息检索 信息推荐 移动AGENT unstructured P2P information retrieval information recommendation mobile agent
  • 相关文献

参考文献14

  • 1Gribble S, Halevy A, Ives Z, et al. What Can Databases Do for Peer to Peer[C]//Proc of Web DB, 2001:31-36.
  • 2http://setiathome. berkeley. edu/.
  • 3http://www. icq. com/.
  • 4http://office. microsoft. com/zh-cn/groove/FX100487642052. aspx.
  • 5http://free. napster.com/.
  • 6Dabek F,et al. Building Peer-to-Peer Systems with Chord, a Distributed Lookup Service [C]//Proc of the 8th Workshop on Hot Topics in Operating Systems, 2001:81-86.
  • 7http://www. gnutelliums. com/.
  • 8Colorni A, Drigo M, Maniezzo V. Distributed Optimization by Ant Colonies[C]//Proc of the 1st European Conf Artificial Life, 1991:134-142.
  • 9Colomi A, Drigo M, Maniezzo V. An Investigation of some Properties of an Ant Algorithm[C]//Proc of PPSN ' 92, 1992:509-520.
  • 10Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Trans on Evolutionary Computation, 1997,1 (1):53-66.

二级参考文献5

  • 1Dorigo M,et al.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41.
  • 2Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 3Dorigo M,et al.Guest editorial:special section on ant colony optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(4):317-319.
  • 4Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[A].Proc.of the 1996 IEEE International Conference on Evolutionary Computation[C].Nagoya,Japan:ICEC'96,1996.622-627.
  • 5吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:306

共引文献75

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部