期刊文献+

基于BP神经网络与纹理分析优化的雾检测 被引量:4

Optimized fog detection and classification technique based on BP artificial neural network and texture analysis
下载PDF
导出
摘要 在利用NOAA AVHRR/3资料并根据雾的均匀纹理特性进行白天雾检测研究中,为了克服对整幅图像进行纹理分析存在的处理复杂和运算量大等缺点,提出了采用纹理分析方法优化细分神经网络雾检测结果的思想。通过计算神经网络检测结果中的低云和雾区连通域的灰度标准差并设定灰度标准差阈值,对神经网络检测结果中的低云区和雾区作了进一步的纹理分析优化细分。结果表明,该方法有效地提高了雾检测的准确性和可靠性。 Detection of daytime fog was studied by NOAA AVHRR/3 data according to the texture characteristics. An idea of subdividing and optimizing BP network's detection results by texture analysis was put forward in order to overcome the shortcomings of high complexity and large computation. Low-level clouds and fog detection results were optimized by calculating and setting the thresholds of the standard deviations of image gray in the connected domains in BP network' s detection results image. Results indicate that this technique effectively improves the accuracy and reliability of fog detection.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第2期195-199,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 中国博士后科学基金资助项目(2004036012) 江苏省博士后科研基金资助项目(0401068B)
关键词 雾检测 NOAA AVHRR/3 神经网络 纹理分析 fog detection NOAA AVHRR/3 artificial neural network texture analysis
  • 相关文献

参考文献6

二级参考文献25

  • 1周成虎,杜云艳,骆剑承.基于知识的AVHRR影像的水体自动识别方法与模型研究[J].自然灾害学报,1996,5(3):100-108. 被引量:80
  • 2巴德MJ 芦乃猛等(译).卫星与雷达图像在天气预报中的应用[M].北京:科学出版社,1998.57-59.
  • 3Sarkar N, Chaudhuri. An effitient approach to estimate fractal dimension in texture image[ J]. 1992,25:1035-1041.
  • 4周成虎 骆剑承 等.遥感影像地学理解与分析[M].北京:科学出版社,2001..
  • 5ACKERMAN S, STRABALA K, MENZEL P, et al. Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MODIS35) [EB/OL]. ftp://eospso.gsfc.nasa.gov/ATBD/REVIEW/MODIS/ATBD-MOD-35/atbd-mod-35.pdf,2002-11-01.
  • 6BEN-DOR E. A precaution regarding cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band[J]. Remote Sens Environ, 1994,50:346-350.
  • 7GRIFFIN M, BURKE H, MANDL D. et al. Cloud cover detection algorithm for EO-1 hyperion imagery[A]. EO-1 SVT Meeting[C]. Hilo: MIT Lincoln Laboratory NASA, 2002.
  • 8JEDLOVEC G J, LAWS K. Operational cloud detection in GOE Simageryi[A]. 11th Conference on Satellite Meteorology and Oceanography[C]. Madison:Univ of WI, Madison, 2001.
  • 9HUTCHISON K D, ETHERTON B J, TOPPING P C, et al. Cloud top phase determination from the fusion of signatures in daytime AVHRR imagery and HIRS data[J]. International Journal of Remote Sensing,1997,18(15):3245-3262.
  • 10DERRIENM L G H. Cloud classification extracted from AVHRR and GOES imagery[R]. Pairs: MeteoFrance SCEM Centre de Meteorologie Spatiale, 1998.

共引文献58

同被引文献61

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部