摘要
讨论Hilbert空间上一类二阶微分包含的集值边界问题,通过研究逼近方程解的有界性与收敛性,并改进Aftabizadech-Pavel估计的方法,在系数光滑性降低的情形下,证明了解的存在唯一性.
This paper deals with a class of multivalued boundary value problems for the subhnear second order differential inclusions in Hilbert spaces. By studying the boundedness and convergence of solutions of the approximate equations, and improving the method of estimation used by Aftabizadech and Pavel, it proves the existence and uniqueness of the solution, hnder the weaker smoothness of coefficients.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第2期13-16,共4页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(10571150)
关键词
二阶微分包含
集值边界
极大单调算子
YOSIDA逼近
second order differential inclusions
multivalued boundary conditions
maximal monotone maps
Yosida approximation