期刊文献+

Hilbert空间上二阶微分包含的边界值问题

Boundary value problems for second order differential inclusions in Hilbert spaces
下载PDF
导出
摘要 讨论Hilbert空间上一类二阶微分包含的集值边界问题,通过研究逼近方程解的有界性与收敛性,并改进Aftabizadech-Pavel估计的方法,在系数光滑性降低的情形下,证明了解的存在唯一性. This paper deals with a class of multivalued boundary value problems for the subhnear second order differential inclusions in Hilbert spaces. By studying the boundedness and convergence of solutions of the approximate equations, and improving the method of estimation used by Aftabizadech and Pavel, it proves the existence and uniqueness of the solution, hnder the weaker smoothness of coefficients.
作者 张庆华 李刚
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期13-16,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10571150)
关键词 二阶微分包含 集值边界 极大单调算子 YOSIDA逼近 second order differential inclusions multivalued boundary conditions maximal monotone maps Yosida approximation
  • 相关文献

参考文献3

二级参考文献15

  • 1NikolaosS.PAPAGEORGIOU,NikolaosYANNAKAKIS.Second Order Nonlinear Evolution Inclusions Existence and Relaxation Results[J].Acta Mathematica Sinica,English Series,2005,21(5):977-996. 被引量:5
  • 2BYSZEWSKI L. Theorems about the existence and uniqueness of solutions of a semiljnear evolution nonlocal Cauchy problem [J]. J Math Anal Appl, 1991, 162(2): 494-505.
  • 3GRIPENBERG G. Global existence of solutions of Volterra intergrodifferential equations of parabolic type [J]. J Diff Eqs, 1993, 102(1): 382-390.
  • 4BENCHOHRA M, NTOUYAS S K. Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces [J]. J Math Anal Appl, 2001, 258(2): 573-590.
  • 5TRAVIS C C, WEBB G F. Existence and stability for reversible semigroups of Lipschitzian mappings in Banach spaces [J]. Dyn Syst & Appl, 2000, 9(2): 255-268.
  • 6WEBB G F. Autonomos nonlinear functional differential equations and nonlinear semigroups [J]. J Math Anal Appl, 1974, 46(1): 1-12.
  • 7LEUNG A W, ZHOU Zhi-ming. Global stability for large systems of Volterra type integrodifferential population delay equations [J]. Nonlinear Anal, 1988, 12(3): 495-505.
  • 8XUE Xin-mei. Existence of solutions for semilinear nolocal Cauchy problems in Banach spaces [J]. Electronic J Diff Eqs, 2005, 64(2): 1-7.
  • 9DEIMLING K. Nonlinear functional analysis[M]. London: Springer-Verlag, 1985.
  • 10BOTHE D. Multivalued perturbations of m-accretive differential inclusions [J]. Isreal J Math, 1998, 108(2): 109-138.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部