期刊文献+

IF多值逻辑及博弈语义

IF Many-valued Logic and Game-theoretical Semantics
下载PDF
导出
摘要 本文基于经典一阶逻辑句法的逻辑优先性分析,把Hintikka的独立联结词和独立量词扩展到多值逻辑中。我们给出IF多值逻辑的句法,并使用不完全信息的语义赋值博弈解释了IF多值逻辑。 In classical first order logic the scopes of quantifiers are always either nested or disjoint. But we have no reason to limit a quantifier to be dependent on the quantifiers which have precedence over it. Hintikka and Sandu introduced a slash operator to make other dependency patterns possible. This operator can be introduced into ordinary first order formulas to remove quantifications and connectives from the scope of previous quantification. In this paper, we clarify the concept of logical priority in IF logic of Hintikka, and then extend many-valued logic to IF many-valued logic by the independent connectives and independent quantifiers. We provide the syntax and semantics of IF many-valued logic, which is based on semantic evaluation game of incomplete information.
作者 陈招万
出处 《逻辑学研究》 2009年第2期65-74,共10页 Studies in Logic
基金 教育部重点研究基地重大项目"博弈逻辑研究"(08JJD720034) 广东省社科项目"多值逻辑与博弈"(07C07)
  • 相关文献

参考文献1

二级参考文献1

  • 1Marcello D’Agostino,Dov M. Gabbay. A generalization of analytic deduction via labelled deductive systems. Part I: Basic substructural logics[J] 1994,Journal of Automated Reasoning(2):243~281

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部