摘要
对ε-代换类:Γ={π:π=(1-ε)π0+εq,q∈D(0≤ε≤1)的贝叶斯稳健性进行分析,π0是选定的先验分布,D为分布集.首先讨论了分布集D的选择对后验稳健性的影响.其次讨论了当D的选择合理时,ML-Ⅱ估计■是后验稳健的,并以■为先验分布,分别对正态分布进行稳健贝叶斯分析.
To analyze the Bayesian robustness of e-substitution class: Γ={π:π=(1-ε)π0+εq,q∈D} 0≤ε≤1,π0 is selected prior distribution, D is distribution set. Firstly, discusses the influence of distribution set D to posterior robustness. Secondly, to the point when the selection of D is reasonable, ML-II estimation π is posterior robust. Takes π to be prior distribution, does the Bayesian robustness analysis to the normal distribution respectively.
出处
《江汉大学学报(自然科学版)》
2009年第2期15-17,共3页
Journal of Jianghan University:Natural Science Edition