期刊文献+

奇完全数的研究进展 被引量:5

Research progress on odd perfect numbers
下载PDF
导出
摘要 主要从奇完全数的基本形式、奇完全数的素因子、奇完全数的下界估计、奇完全数的判定、奇完全数的Eu ler因子、特殊类型的奇完全数这6个方面对奇完全数这一问题的研究成果进行了综合评述。 It is not known whether or not there exists an odd perfect number, which has been a btg difficult problem of number theory. It is studied by some scholars and some highly significant results have been given. In the paper, the problem of odd perfect number is reviewed comprehensively from 6 respects: basic form of odd perfect number; prime factors of odd perfect number; lower bound of it; its judgment; its Euler's factor; odd perfect of certain form.
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2009年第3期37-40,共4页 Journal of Foshan University(Natural Science Edition)
关键词 完全数 奇完全数 奇完全数的下界 奇完全数的Euler因子 奇完全数的判定 特殊类型的奇完全数 perfect number odd perfect number lower bound Euler's factor judgment of odd perfect number odd perfect of certain form
  • 相关文献

参考文献24

  • 1GUY R K.Unsolved problems in number theory[M].New York:Springer-verlag,1994.
  • 2SYLVESSTER J J.Sur inpossibilite de existence dun nombre parfait impair qui ne contient pas au moins 5 divi-seurs distincts[J].Compte Rendus CVI,1888,20:522-526.
  • 3DICKSON L E.Finiteness of the odd perfect and primitive abundant numbers with distinct primes factors[J].Amer J Math,1913,35:413-422.
  • 4KANOLD H J.Folgenungen aus dem vorkommen einer gauβschen primzahl in der primfaktorzerlegung einer unge-raden vollkommenen zahl[J].J Reine Angen Math,1949,186:25-29.
  • 5K U* *HNEL U.Verscharfung der notwendigen bedingungen für die existenz von ungeraden vorkommen zahlen[J].Math Ⅰ,1949,52:202-211.
  • 6WEBBER G C.Non-existence of odd perfect numbers of the 32βpαs2β11 s2β22 s2β33[J].Duke Math J,1951,18:741-749.
  • 7POMERANCE C.Odd perfect numbers are divisible by at least seven distinct primes[J].Acta Arith,1974,25:265-300.
  • 8CHEIN E Z.An odd perfect number has at least 8 prime factors[J].Notices Math Soc,1979,26:365.
  • 9HAGIS P.Outline of a proof that every odd perfect number has at least eight prime factors[J].Math Comp,1980,35:1027-1032.
  • 10杨仕椿.形如N=π~α3^(2β)Q^(2β)的奇完全数[J].阿坝师范高等专科学校学报,2006,23(4):120-122. 被引量:4

二级参考文献12

  • 1华罗庚.数论导引[M].北京:科学出版社,1979.11-12.
  • 2华罗庚.数论导引[M].北京:科学出版社,1979..
  • 3Hagis P.Every odd perfect number has at least 8 prime factors[J].Notices Amer Math Soc.1975(22):60.
  • 4Dickson L E. History of the theory of numbers, Vol. 1 [ M]. Washington:Carnegie Institution, 1919.
  • 5Slowak J. Odd perfect numbers[J]. Math Slovaca, 1999, 49(3) :253 -254.
  • 6Ljunggren W. Noen setninger om ubestemte likninger av formen (xn -1 )/( x -1 ) = y9[ J]. Norsk Mat Tidsskr, 1943, 25: 17 - 20.
  • 7Le M - H. On the diophantine equation (xn + 1)/(x"+ 1) =y2[J]. Acta Arith, 1997, 82(1) :17 -26.
  • 8EULER L. Vollstaandige Anleitung Zur Algebra[M] .Royal. Acad. Sci. ,St. Petersburg, 1770.
  • 9STRANI P. On the Euler' s Factor of an Odd Perfect Number[J] .J. Number Theory, 1991,37:366 - 369.
  • 10Wayne L. McDaniel. The non-existence of odd perfect numbers of a certain form[J] 1970,Archiv der Mathematik(1):52~53

共引文献17

同被引文献36

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部