摘要
讨论拟线性双曲方程ut+(um)x=tqup,以σ-有限的Borel测度为初值的Cauchy问题,其中m>1,0<p≤1,q≥0是给定常数,证明了BV解的存在性.
The aim of the present paper is to discuss the Cauchy problem for a class of quasilinear hyper- bolic equations of the form ut+(u^m)x=t^qu^p with σ- finite Borel measures as initial conditions, where m〉1,0〈P≤1,q≥0 are some given real numbers,the existence of BV solutions for the above problem is obtained.
出处
《湘潭大学自然科学学报》
CAS
CSCD
北大核心
2009年第2期1-7,共7页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金资助项目(50675185)
教育部博士点基金资助项目(20070530003)
湖南省教育厅优秀青年资助项目(08B083)
关键词
BV解
拟线性双曲方程
BV solutions
quasilinear hyperbolic equation