期刊文献+

基于拓展性和魔方变换的自适应蚁群算法 被引量:1

Adaptive Ant Colony Algorithm Based on Expandability and Magic Cube Transformation
原文传递
导出
摘要 针对传统蚁群算法在求解过程中搜索时间过长、易于出现早熟停滞的缺陷,提出一种具有拓展性的自适应蚁群算法.蚁群综合启发式信息、信息素轨迹和拓展性信息自适应地调整状态转移规则,并采用全局信息素非均匀更新策略,有效增强了蚁群的全局搜索能力.同时,受魔方变换的启发,提出了一种新颖的魔方变异策略,以加快对迭代最优解进行局部优化的速度.旅行商问题仿真验证了文中改进蚁群算法的有效性,其收敛速度、稳定性远高于传统蚁群算法. There are the shortcomings such as longer computing time and precocity and stagnation in classical ant colony algorithm. Based on the expandability, an adaptive ant colony algorithm is presented. The algorithm dynamically adjusts state transition rule by integrating expandability with heuristics and pheromone. Meanwhile, an uneven strategy based on the global pheromone updating is adopted to enhance the ant's excellent ability in searching the whole best solution. In addition, a novel magic cube mutation strategy, inspired by the magic cube transformation, is employed to accelerate evolution speed after each iteration. The experimental results on TSP demonstrate that the proposed algorithm has much higher convergence speed and Stability than that of classical ant colony algorithm.
作者 马小平 金珠
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2009年第4期503-508,共6页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(60775044)
关键词 蚁群算法 魔方变换 变异 旅行商问题 ant colony algorithm magic cube transformation mutation traveling salesman problem
  • 相关文献

参考文献6

二级参考文献32

  • 1CaySHorstmann et al.Java2 核心技术(卷二):高级特性[M].Prentice Hall.北京:机械工业出版社,2000..
  • 2Dorigo M, Maniezzo V,Colorni A.Ant System: Optimization by a Colony of Coorperating Agents. IEEE Transactions on SMC, 1996,26(1): 8-41
  • 3Dorigo M, Gambardella L M. Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computing, 1997,1 (1):53-56
  • 4Colorni A, Dorigo M, Maniezzo V. Ant Colony System for Job-shop Scheduling. Belgian Journal of Operations Research Statistics and Computer Science, 1994,34(1):39-53
  • 5Maniezzo V. Exact and Approximate Nonditerministic Tree Search Procedures for the Quadratic Assignment Problem. Informs Journal of Computer, 1999,11 (4):358-369
  • 6Maniezzo V, Carbonaro A. An ANTS Heuristic for the Frequency Assignment Problem. Future Generation Computer Systems, 2000, 16(8):927-935
  • 7Gambardella L M, Dorigo M. HAS-SOP: A Hybrid Ant System for the Sequential Ordering Problem. Technique Report, No. IDSIA 97-11, IDSIA, Lugano, Switzerland, 1997
  • 8Gambardella L M, Dorigo M. Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem. In: Prieditis A, Russell S(eds.) Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA: Morgan Kaufmann, 1995:252-260
  • 9Dorigo M, Luca M. A Study of Some Properties of Ant-Q. Technical Report TR/IRIDIA/1996-4, IRIDIA, University Libre de Bruxelles,1996
  • 10Stutzle T, Hoos H H. Improvements on the Ant System: Introducing the MAX-MIN Ant System.In:Artificial Neural Networks and Genetic Algorithms, New York: Springer-Verlag, 1988:245-249

共引文献443

同被引文献12

引证文献1

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部