摘要
关联规则分类器(CBA)利用关联规则来构造分类算法,但其没有考虑分类问题中的不确定性。提出一种基于关联规则的贝叶斯网络分类算法。该算法利用关联规则挖掘算法提取初始的候选网络边集,通过贪心算法学习网络结构,得到比经典的贝叶斯网络分类器TAN更好的拓扑结构。通过在15个UCI数据集上的实验结果表明,该算法取得了比TAN,CBA更好的分类性能。
Classification Based on Association (CBA) algorithm built a classifier based on the association rules, without considering the uncertainty in the classification problem. This paper proposed a Bayesian network classifier based on the association rules. The improved algorithm initialized the graph structure with candidate edges, which was extracted by Apriori algorithm, and obtained a better network structure than Tree-Augmented Network (TAN) classifier with the greedy search. The empirical study on 15 UCI datasets shows that the improved algorithm yields higher accuracies than TAN, CBA.
出处
《计算机应用》
CSCD
北大核心
2009年第B06期134-136,共3页
journal of Computer Applications
关键词
关联规则分类器
贝叶斯网络分类器
结构学习
Classification Based on Association (CBA)
Bayesian network classifier
structure learning