摘要
粒子群优化算法是近年来发展起来的一种元启发式的搜索算法,是目前解决组合优化问题的最有效的算法之一。针对考试时间表问题(ETP),通过基于时间序列的粒子编码方式和新的更新算子,建立ETP问题的粒子群求解模型,并结合简化邻域搜索算法给出了改进策略。仿真实验结果表明所提算法及策略的有效性。
Particle Swarm Optimization (PSO) is a new meta-heuristic search technology developed in recent years, and it is one of the most effective algorithms for combinatorial optimization problems at present. To solve the Examination Timetabling Problem (ETP), this paper proposed a PSO algorithm, which adopted an encoding scheme based on time permutation and a new individual production operator, and employed a simple neighborhood search to improve searches. The experimental results show that the proposed algorithm and strategy are effective and efficient for different scale benchmarks of ETP.
出处
《计算机应用》
CSCD
北大核心
2009年第B06期137-140,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(70871065)
北京市自然科学基金资助项目(4083034)
北京市教育委员会科技发展项目(KM200610005020)
关键词
考试时间表问题
粒子群优化算法
邻域搜索
Examination Timetabling Problem (ETP)
Particle Swarm Optimization (PSO) algorithm
neighborhood search