期刊文献+

一致有界可导周期函数定义的随机级数的分布

The distribution of the random series defined by a period and leaded function with boundary consistently
下载PDF
导出
摘要 应用函数项随机级数的性质.讨论了形如P(t)=∑nξfn(t)的随机多项式,当fn(t)是一致有界可导周期函数,nξ是次G auss随机变量序列时‖P‖∞的分布.进而得到ξn为复次G auss随机变量序列时的类似结论. Based on the properties of random series of functions,the distribution of the ‖P‖∞ of the random series P(t) =∑ξnfn(t) is given in this paper ,where ξn is a subgaussian sequence, fn(t) is defined by a period and leaded function with boundary consistently. When the complex subgaussian sequence is instead of the sequence of subgaussian , the results can also be proved.
作者 余彬
出处 《阜阳师范学院学报(自然科学版)》 2009年第2期16-18,共3页 Journal of Fuyang Normal University(Natural Science)
关键词 ‖P‖∞ 次Gauss分布 复次Gauss分布 随机级数 ‖P‖∞ subgaussian distribution complex subgaussian distribution random series
  • 相关文献

参考文献5

二级参考文献13

  • 1严加安.测度论讲义[M].北京:科学出版社,2000.40-49.
  • 2J-P卡昂纳 余家荣 吴敏 余久曼 等.函数项随机级数[M].武汉:武汉大学出版社,1991..
  • 3Goursat E. Cours d'analyse I. Paris: Gauthier-Villars, 1948
  • 4Kahane J P. Some Random Series of Functions. Second ed. Cambridge: Cambridge Univ Press, 1985
  • 5Kahane J P. Some Random Series of Functions. Chinese Version, Wuhan: Wuhan Univ Press, 1993
  • 6Lelong P, Gruman L. Entire Functions of Several Complex Variables. Berlin: Springer Verlag, 1986
  • 7Mandelbrojt S. Séries de Dirichlet. Prencipes et Méthodes. Paris: Gauthier-Villars, 1969
  • 8Shi J H. Foundations of the Theory of Functions of Sevrral Complex Variables (in Chinese). Beijing:Higher Education Press, 1996
  • 9Valiron G. Theory of Integral Functions. New York: Chelsea, 1949
  • 10Valiron G. Sur la croissance du module maximum des séries entières. Bull Soc Math France, 1916, 44:45-64

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部