期刊文献+

Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric 被引量:1

Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric
下载PDF
导出
摘要 Carrier mobifity enhancement from 0.09 to 0.59cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the Hf02 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HI02 surface, the Stranski- Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility. Carrier mobifity enhancement from 0.09 to 0.59cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the Hf02 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HI02 surface, the Stranski- Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第7期369-371,共3页 中国物理快报(英文版)
  • 相关文献

参考文献18

  • 1Cavallini M, Stoliar P, Moulin J, Surin M, Leclere P, Lazzaroni R, Breiby D W, Andreasen J W, Nielsen M M, Sonar P, Grimsdale A C, Mullen K, and Biscarini F 2005 Nano. Lett. 5 2422.
  • 2Dimitrakopoulos C D, Kymissis I, Purushothaman S, Neumayer D A, Duncombe P R and Laibowitz R B 1999 Adv. Mater. 11 1372.
  • 3Jeong Y T and Dodabalapur A 2007 Appl. Phys. Lett. 91 193509.
  • 4Wang J, Yan X J, Yu Y X, Zhang J and Yah D H 2004 Appl. Phys. Lett. 85 5424.
  • 5Kim C S, Jo S J, Lee S W, Kim W J, Balk H K and Lee S J 2007 Adv. Funct. Mater. 17 958.
  • 6Zhao Y H, Dong G F, Wang L D and Qiu Y 2007 Chin. Phys. Lett. 24 1664.
  • 7Kelley T W, Muyres D V, Baude P F, Smith T P and Jones T D 2003 Mater. Res. Soe. Syrup. Proc. 771 169.
  • 8Horowitz G and Hajlaoui M E 2000 Adv. Mater. 12 1046.
  • 9Verlaak S, Rolin C and Heremans P 2007 J. Phys. Chem. B 111 139.
  • 10Verlaak S and Heremans P 2007Phys. Rev. B 75 115127.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部