摘要
在前向神经网络模型的基础上,构建了一类新型广义多项式神经网络,依据BP神经网络梯度下降法的思想,给出该神经网络的权值迭代修正公式,并在此基础上建立其结构自适应确定算法,并进行仿真实验.结果表明,该神经网络计算精度高、能自适应地确定网络结构.
In this paper, based on special feed-forward neural network, a novel type of general polynomial neural network is constructed. According to the idea of the declining of gradient of BP neural network, the weight iterative modification formula of this neural network is presented. Accordingly, a strueture-adaptive-determination method is proposed and its simulation experiemnts are conducted. Theoretical analysis and simulation results substantiate that such a neural network could be efficient and accurate and determinate its structure adaptively.
出处
《重庆工学院学报(自然科学版)》
2009年第7期97-99,共3页
Journal of Chongqing Institute of Technology
基金
国家自然科学基金资助项目(60775050)
浙江大学CAD/CG国家重点实验室开放课题资助项目(A0908)
关键词
广义多项式
神经网络
结构自适应确定
general polynomial
neural network
structure-adaptive-determination