期刊文献+

基于支持向量机逆系统的感应电机线性化解耦控制

Linearization And Decoupled Control for Induction Motors Based on SVM Inverse System
下载PDF
导出
摘要 本文提出了一种新的系统线性化解耦控制方法,其特点是不依赖于对象的精确数学模型,通过采用支持向量机与逆系统相结合的方法来构造原系统的逆系统.本文将基于支持向量机逆系统的方法应用于感应电机解耦控制,将感应电机这一多变量、非线性、强耦合的复杂对象动态解耦成转速与转子磁链两个一阶子系统,从而可以像线性系统一样进行控制.仿真结果表明采用该方法后系统具有优良的静态与动态解耦性能. A novel method named as support vector machine (SVM) for induction motor control is proposed. It is characterized by the construction of the SVM inverse system which is independent of the motor model and parameters. Through using SVM and inverse system integrators, the motor inverse system is built .The multivariable, nonlinear and strongly coupled system is deeoupled into two independent flint-order subs, or rotor speed subsystem and rotor flux one, so as to be easy to control each of the subsystems like linear system. Simulation results show that this system have good static and dynamic decoupling performance.
出处 《邵阳学院学报(自然科学版)》 2009年第2期24-27,共4页 Journal of Shaoyang University:Natural Science Edition
关键词 支持向量机 逆系统 感应电机 解耦控制 support vector machine (SVM) inverse system deeoupled control induction motor
  • 相关文献

参考文献4

二级参考文献22

  • 1陈伯时,徐荫定.电流滞环控制PWM逆变器异步电动机的非线性解耦控制系统[J].自动化学报,1994,20(1):50-57. 被引量:27
  • 2徐大平,杨金芳,翟永杰,韩璞.SVR的限定记忆在线辨识算法及其应用[J].动力工程,2005,25(5):680-684. 被引量:8
  • 3widrowB WalachE著 刘树棠 韩崇昭译.自适应逆控制[M].西安:西安交通大学出版社,2000..
  • 4Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 5Den H,Li H X.A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems[J].IEEE Trans SMC,2005,35 (1):115-123.
  • 6MARINO R,PERESADA S,VALIGI P.Adaptive input-output linearizing control of induction motors[J].IEEE Trans.on Automatic Control,1993,38(2):208-221.
  • 7DAI X,HE D,ZHANG X,et al.MIMO system invertibilty and decoupling control strategies based on ANN α-order inversion[J].IEE proc-Control Theory and Application,2001,148:125-136.
  • 8SUYKENS J A K,LUKAS L,VANDEWALLE J.Sparse approximation using least squares support vector machine[C]∥IEEE International Symposium on Circuits and Systems.Geneva:IEEE,2000,(II):757-760.
  • 9SUYKENS J A K.Support vector machines:A nonlinear modeling and control perspective[J].European Journal of Control,2001,7(2-3):311-327.
  • 10LIU San,GE Ming.An effective learning approach for nonlinear system modeling[C]∥ International Sympo-sium on Intelligent Control.Taipe,Taiwan:[s.n.],2004:73-77.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部