期刊文献+

基于多量子粒子群协同进化算法的敏捷供应链伙伴选择 被引量:3

PARTNER SELECTION OF AGILE SUPPLY CHAIN BASED ON QUANTUM PARTICLE SWARM COOPERATIVE EVOLUTIONARY OPTIMIZATION ALGORITHM WITH MULTI-POPULATIONS
下载PDF
导出
摘要 针对敏捷供应链组建过程中伙伴选择的特点,提出了一种基于多种群协同进化的改进量子粒子群算法.在对该算法的设计中,首先将整个量子粒子种群分解为多个子种群,然后使各个子种群进行独立的演化,并通过周期性的共享搜索信息获得对自身信息的更新,最后通过具体的算例对该算法进行了仿真验证.研究结果表明,在算法的收敛性、最优性等方面,基于多量子粒子种群协同进化算法均达到了良好的效果. According to the characteristic of partner selection in the process of buildup of agile supply chains, a new quantum particle swarm optimizer, called the cooperative evolutionary QPSO with multi-populations(MC-PSO), is presented based on the analysis of the standard QPSO. The whole quantum particle swarm group is divided into several sub-groups. Every subgroup evolved independently and updated sharing information periodically. Finally we use a practical analyses to confirm the performance of the method. The results show that MC- QPSO is effective in solving the problem.
出处 《陕西科技大学学报(自然科学版)》 2009年第3期161-164,173,共5页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(项目编号:50605048)
关键词 量子粒子群算法 多种群 协同进化 敏捷供应链 伙伴选择 quantum particle swarm optimization (QPSO) multi-populations cooperative evolutionary agile supply chains partner selection
  • 相关文献

参考文献8

二级参考文献22

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2赵勇,岳继光,李炳宇,张传升.一种新的求解复杂函数优化问题的并行粒子群算法[J].计算机工程与应用,2005,41(16):58-60. 被引量:17
  • 3金义雄,程浩忠,严健勇,张丽.基于局优分支优化的粒子群收敛保证算法及其在电网规划中的应用[J].中国电机工程学报,2005,25(23):12-18. 被引量:37
  • 4KENNEDY J, EBERHART R. Particle swarm optimization[ C ]//Proc of IEEE Int Conf on Neural Networks. Piscataway,NJ: IEEE Press, 1995 : 1942 - 1948.
  • 5EBERHART R, KENNEDY J. A new optimizer using particles warm theory [ C ]// Proc of the 6th Int Sympsium on Micromachine and Human Science. Piscataway, NJ: IEEE Press,1995:39-43.
  • 6KENNEDY J.Tile particle swarm: Social adaptation of knowledge[ C ]//Proc of IEEE Int Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1997:303 -306.
  • 7SHI Yuhui, EBERHART R. A modified particle swarm optimizer[ C ]//Proc of IEEE Int Conf on Evolutionary Computation.Piscataway, NJ: IEEE Press, 1998:67 -73.
  • 8TRELEA I C. The particle swarm optimization algorithm: convergence analysis and parameter selection [J]. Information Processing Letters, 2003, 85 (9) : 317 - 325.
  • 9BERGH F, ENGELBRECHT A P. A new locally covergent particle swarm optimization [ C ]//Proc of IEEE Int Conf on System, Man and Cybernetics. Piscataway, NJ: IEEE Press,2002: 625 - 631.
  • 10ROSIN C , BELEW R, MORRIS G, et al. New methods for compititive coevolution [J]. Evolutionary Computation. 1997,5(1): 1-29.

共引文献53

同被引文献43

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部