期刊文献+

一类广义Sine-Gordon方程概周期解的上下解证法 被引量:1

Almost Periodic Solutions to Generalized Sine-Gordon Equations with Method of Upper and Lower Solutions
下载PDF
导出
摘要 在Ortega等人关于Sine-Gordon方程研究结论的基础上,为扩大研究对象并进一步完善概周期解理论,研究了一类在物理中常用的Sine-Gordon方程广义形式的概周期解.该广义形式是把一般形式中变量的正弦函数变换为关于正弦函数的奇数次多项式.在研究概周期解的过程中利用了上下解的方法、紧性准则和概周期函数点态定义的知识.首先介绍了所用到的定义和结论;接下来研究了在一定条件下,广义Sine-Gordon方程解的存在性,并结合文献中已有的结论证得了该弱解的唯一性;最后,证明了当受迫项为概周期函数时,之前所得到的唯一弱解即为Sine-Gordon方程广义形式的概周期解,即得到了概周期解的存在性,并得到了该解在一定范围内的唯一性,取得了较好的结果.所得结果覆盖了已有的结论,具有一定的理论和实际意义. Based on study conclusions of researchers, including Ortega, the paper researches the almost periodic solution of the Sine-Gordon equation in physics to extend the research objects and then perfect the almost periodic solution theory. In the generalized Sine-Gordon equation the "sinu" is changed by its odd number polynomial. The method of upper and lower soiutions, compactness criterion and definition of the almost periodic function are applied in the research. First, the definition and conclusion usedin this paper are introduced;then the solution of generalized Sine-Gordon equation is found under special condition, and its uniqueness is also got with the conclusion in literature; finally, the almost periodic solution is found with the almost periodic forced, proving that the only weak salution obtained previously is the almost periodic solution to generalized Sine-Gordon equation, and we also obtain its existance and uniqueness within certain limits. The above results cover the accepted conclusions and also have some significance in theory and reality.
作者 孟凡卉
机构地区 枣庄学院数学系
出处 《河北北方学院学报(自然科学版)》 2009年第3期11-13,18,共4页 Journal of Hebei North University:Natural Science Edition
关键词 广义Sine-Gordon方程 概周期解 上下解证法 generalized Sine-Gordon equation almost periodic solution the method of upper and lower solutions
  • 相关文献

参考文献9

  • 1Ortega R,Robles-Pérez AM.A maximum principle for periodic solutions of the telegraph equation[J].J Math Anal Appl.1998,221:625-651
  • 2Mawhin J,Ortega R.Robles-Pérez AM.A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings[J].J Math Anal Appl.2000,251:695-709
  • 3Mawhin J,Ortega R,Robles-Pérez AM.Maximum principle for bounded solutions of the telegraph equation in space dimensions two and three and applications[J].J Differ Equat,2005,208:42-63
  • 4盛平兴.广义Sine-Gordon方程的混沌与湍流[J].应用数学学报,2005,28(3):453-457. 被引量:13
  • 5Fink AM."Almost Periodic Differential Equations",Lecture Notes in Mathematics[M].Berlin:Springer-Verlag,1974:377
  • 6朴大雄,邱汶华.一类广义Sine-Gordon方程的概周期解[J].中国海洋大学学报(自然科学版),2006,36(6):892-894. 被引量:4
  • 7朴大雄,辛娜.受迫摆方程的伪概周期解[J].中国海洋大学学报(自然科学版),2007,37(4):573-575. 被引量:6
  • 8李永祥.电报方程双周期解的极大值原理与强正性估计及应用[J].数学学报(中文版),2007,50(4):895-908. 被引量:3
  • 9Clément PH,Peletier A.An anti-maximum principle for second-order elliptic operators[J].J Differ Equat,1979,34:218-229

二级参考文献17

  • 1安玉坤,徐登洲.一类非线性电报方程的多重周期解[J].数学进展,1994,23(6):555-562. 被引量:1
  • 2盛平兴.Lorenz方程同窗轨的存在参数[J].应用数学与计算数学学报,1994,8(1):34-38. 被引量:6
  • 3盛平兴.广义Sine-Gordon方程的混沌与湍流[J].应用数学学报,2005,28(3):453-457. 被引量:13
  • 4Ortega R,Robles-Pérez A M.A maximum principle for periodic solutions of the telegraph equation[J].J Math Anal Appl,1998,221:625-651.
  • 5Mawhin J,Ortega R,Robles-Pérez A M.A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings[J].J Math Anal Appl,2000,251:695-709.
  • 6Mawhin J,Ortega R,Robles-Pérez A M.Maximum principle for bounded solutions of the telegraph equation in space dimensions two and three and applications[J].J Differential Equations,2005,208:42-63.
  • 7普劳特 M H,温伯格 H F.微分方程的最大值原理[M].叶其孝,刘西垣译.北京:科学出版社,1992.
  • 8Clément Ph,Peletier A.An anti-maximum principle for second-order elliptic operators[J].J Differential Equations,1979,34:218-229.
  • 9López-Gómez J and,Molina-Meyer M.The maximum principle for cooperative weakly coupled elliptic system and some applications[J].Differential Integral Equations,1994,7:383-398.
  • 10Fink A M.Almost periodic differential equations.Lecture Notes in Mathematics[M].Berlin:Springer-Verlag,1974:377.

共引文献18

同被引文献9

  • 1Zhang ZG, Yang AJ, Di CN. Existence of positive solutions of second-order nonlinear neutral differential equations with positive and negative terms[J]. J Appl Math Comp, 2007, (25): 245-253.
  • 2Li WT, Positive solutions of second-order nonlinear differential equations [J]. J Math Anal Appl, 1998, (211): 326- 337.
  • 3Bohner M, Saker SH. Oscillation of second-order nonlinear dynamic equations on time scales [J]. Rocky Mount J Math, 2004, 34, (04): 1239-1254.
  • 4Dosly O, Hilger S. A necessary and sufficient condition for oscillation of the Sturm Liouville dynamic equation on times scales [J]. J Comp Appl Math, 2002, (141) : 147-158.
  • 5Bohner M, Guseinoy GS. Imroper integerals on time scales [J]. Dyn Syst Appl, 2003, (12): 45-65.
  • 6Erbe H, Kong Q, Zhang BG. Oscillatory theory for functional differential equation[M]. New York: Dekker, 1995: 202-287.
  • 7Bohner M, Peerson A. Dynamic Equations on Time Scales [M]. Boston: Birkhauser, 2001:1-49.
  • 8牛秀艳,姜小军,尹洪武,俞百印,王静.一类多滞量周期扰动非线性系统的周期解[J].云南民族大学学报(自然科学版),2009,18(1):10-12. 被引量:3
  • 9张文娟,王林.一阶具有分段常数变量的脉冲微分方程的比较结果[J].河北北方学院学报(自然科学版),2008,24(A03):1-3. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部