期刊文献+

ARMA(p,q)利率模型下的破产概率

Ruin probability in ARMA(p,q) stochastic interest rate model
下载PDF
导出
摘要 为了更好地研究利率因素对破产概率的影响,利用时间序列理论,建立了ARMA(p,q)利率模型,在此利率模型下,通过积分方程得到了破产概率的上界,并将此上界与AR(1)利率模型下破产概率的上界以及Lundberg上界进行了比较,所得结果推广了古典风险模型的相应结果. In order to study the effects of the factors like interest rate on the ruin probability, we established an ARMA(p, q ) stochastic interest rate model by applying time series theory. In this interest rate model, the rates of interest are assumed to have an ARMA(p, q) structure.An upper bound of the ruin probabilities is derived from the integral equation. We made a comparison of the this upper bound with that in AR (1) interest rate model and Lundberg upper bound, and the results generalize the corresponding result of the classical risk model.
作者 邹娓 谢杰华
出处 《南昌工程学院学报》 CAS 2009年第3期19-24,36,共7页 Journal of Nanchang Institute of Technology
基金 南昌工程学院青年基金项目(2008KJ024)
关键词 破产概率 上界 ARMA(p q)模型 ruin probability upper bound ARMA (p, q ) model
  • 相关文献

参考文献7

  • 1Gerber H.An introducion to mathematial risk theory[M].Philadelphia:University of Pennsylvania,1979.
  • 2Sundt B,Teugels J L.Ruin estimates under interest force[J].Insurance:Mathematics and Economics,1995,16:7-22.
  • 3Sundt B,Teugels J L.The adjustment function in ruin estimates under interest force[J].Insurance:Mathematics and Economics,1997,19:85-94.
  • 4Cai Jun.Discrete time risk models under rates of interest[J].Prob Eng Inf Sci,2002,16:309-324.
  • 5Cai Jun.Ruin probabilities with dependent rates of interest[J].Journal of applied probability,2002,39:321-323.
  • 6谢杰华,邹娓.一类具有时间相依索赔风险模型的破产概率[J].中国科学院研究生院学报,2008,25(3):313-319. 被引量:10
  • 7谢杰华,邹娓.基于ARMA(p,q)利率下生存年金精算现值模型[J].南昌工程学院学报,2008,27(1):39-43. 被引量:2

二级参考文献17

  • 1高建伟,李春杰.随机利率下缴费预定型企业年金保险中生存年金精算现值模型[J].系统工程,2004,22(5):53-56. 被引量:7
  • 2高建伟,丁克诠.MA(q)利率下企业生存年金精算现值模型[J].系统工程学报,2006,21(2):131-135. 被引量:10
  • 3高建伟,张兴平,高明.缴费预定型企业年金保险中基于滑动平均利率的生存年金精算现值模型[J].系统工程理论与实践,2006,26(8):27-32. 被引量:5
  • 4Bellhouse D R, Panjer H H. Stochastic modeling of interest rates with applications to life contingencies[ J ]. Journal of Risk and Insurance, 1980,47(1) :91 - 110.
  • 5Bellhouse D R, Panjer H H. Stochastic modeling of interest rates with applications to life contingencies-part Ⅱ[ J ]. Journal of Risk and In- surance, 1981,48(4) :628 - 637.
  • 6Frees E W. Stochastic life contingencies with solvency consideration[ J ]. Transaction of Society Actuaries, 1990,42:91 - 149.
  • 7Haberman S, Sung Joo- Ho. Dynamic approaches to pension funding[ J]. Insurance:Mathematics and Economics, 1994,15:151 - 162.
  • 8Haberman S. Moving average rates of return and variability of pension contributions and fund scheme[ J ]. Insurance : Mathematics and Economics, 1997,20:115 - 135.
  • 9Haberman S. Stochastic investment return and contribution rate risk in a defined benefit pension scheme[J]. Insurance:Mathematics and Economics, 1997,19 : 127 - 139.
  • 10Dhaene J. On approximating distribution by their de pill transforms[ J ]. Scandinavian Actuarial Journal, 1998,1:1 -23.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部