期刊文献+

喷雾燃烧热分解制备Cr掺杂TiO_2纳米粒子的可见光催化性能 被引量:6

Visible-light Photocataltic Activity of Cr-doped TiO_2 Nanoparticles Synthesized by Flame Spray Pyrolysis
下载PDF
导出
摘要 采用一步喷雾燃烧热解法制备了Cr掺杂TiO2纳米粒子,研究了Cr掺杂对样品微结构、吸光特性和可见光催化活性的影响.结果表明:增加Cr掺杂量抑制锐钛矿相的形成,同时促进金红石相的形成.在低Cr掺杂量下(≤1%),Cr主要以Cr3+的形态进入TiO2晶格,而Cr掺杂量过大时,易于形成Cr2O3团簇.光催化降解2,4-二氯苯酚结果表明,适量的Cr3+掺杂可以有效地提高TiO2的可见光催化活性,获得最高光催化活性的Cr3+掺杂量为1at%.样品可见光催化活性的提高主要与Cr掺杂引起的可见光吸收增强、晶相组成改善以及光生电子和空穴传输效率提高有关. Cr-doped TiO2 nanoparticles were synthesized by one-step flame spray pyrolysis technique. The effects of Cr^3+ doping on the microstructure, light absorption property, and photocatalytic activity of the samples were investigated. It is found that increasing Cr^3+ concentration restrains the formation of anatase and simultaneously favors the formation of rutile. At low concentration (≤1%), Cr is mainly incorporated into the crystal lattice of TiO2 in the form of Cr^3+, while high Cr concentration promotes the formation of Cr2O3 clusters. The result of photocatalytic degradation of 2,4-dichlorophenol demonstrates that appropriate Cr^3+ doping can evidently enhance the visible-light photocatalytic activity of TiO2. The optimal Cr^3+ concentration to obtain the highest photocatalytic activity is 1at%. The improvement of visible-light photocatalytic activity derived from Cr doping is mainly related to the enhancement of visible light absorption, appropriate crystalline composition, and improved transfer efficiency of photogenerated electrons and holes.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2009年第4期661-665,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(20706015 50703009) 国家高技术研究发展计划(2006AA03Z358) 国家教育部博士点基金(20070251022) 上海市重点实验室专项基金(07DZ22016 06DZ22008) 上海市纳米科技专项基金(0752nm010 0652nm034)
关键词 喷雾燃烧热分解 TIO2 铬掺杂 光催化活性 flame spray pyrolysis titanium dioxide Cr doping photocatalytic activity
  • 相关文献

参考文献30

  • 1Hoffman M R,Martin S T,Choi W,etal.Chem.Rev.,1995,95(1):69-96.
  • 2Carp O,Huisman C L,Relier A.Prog.Solid State Chem.,2004,32(1/2):33-177.
  • 3Choi WY.Catal.Surv.Asia,2006,10(1):16-28.
  • 4Anpo M,Takeuchi M.J.Catal.,2003,216(1/2):505-516.
  • 5Choi W,Terrain A,Hoffmann M R.J.Phys.Chem.,1994,98(51):13669-13679.
  • 6Di Paola A,Marci G,Palmisano L,et al.J.Phys.Chem.B,2002,106(3):637-645.
  • 7Zhu J F,Deng Z G,Chen F,et al.Appl.Catal.B,2006,62(3/4):329-335.
  • 8Anpo M,Dohshi S,Kitano M,et al.Annu.Rev.Mater.Res.,2005,35:1-27.
  • 9Yamashita H,Anpo M.Catal.Surv.Asia,2004,8(1):35-45.
  • 10Wu J C S,Chen C H.J.Photochem.Photobio.A,2004,163(3):509-515.

同被引文献131

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部