摘要
In order to get an approximation with better effect of pararneterization of Bezier curves, we proposed a method for arc-length parameterization and the corresponding algorithms by square approximation for the discrete even de-parameterization of the curves. This method is simple and easy to implement, and the property of the approximation has no change compared with the original curve. A quantitative criterion for estimating the effect of parameterization is also built to quantitatively characterize the parameterization effect of the algorithms. As a result, the nearly arc-length parameterized curve has a smaller relative deviation using either the algorithm with point constraint at endpoints or the algorithm with point constraint plus the first derivative constraint at endpoints. Experiments show that after re-parameterization with our algorithms, the relative deviation will have at least a 20% reduction.
In order to get an approximation with better effect of pararneterization of Bezier curves, we proposed a method for arc-length parameterization and the corresponding algorithms by square approximation for the discrete even de-parameterization of the curves. This method is simple and easy to implement, and the property of the approximation has no change compared with the original curve. A quantitative criterion for estimating the effect of parameterization is also built to quantitatively characterize the parameterization effect of the algorithms. As a result, the nearly arc-length parameterized curve has a smaller relative deviation using either the algorithm with point constraint at endpoints or the algorithm with point constraint plus the first derivative constraint at endpoints. Experiments show that after re-parameterization with our algorithms, the relative deviation will have at least a 20% reduction.
基金
The National Natural Science Foundationof China (No.60672135)
the Natural Science Foundation of Department of Education of Shaanxi Province, China(No.09JK809)