期刊文献+

PEG在线定点修饰水蛭素及其修饰位点的理论预测与分析 被引量:3

Specific-site PEGylation of Hirudin on Ion-exchange Column and Theoretical Prediction and Analysis of Modified Sites by Molecular Dynamics Simulation
下载PDF
导出
摘要 比较了液相和固相修饰水蛭素的实验结果,并在实验的基础上对水蛭素以及水蛭素/凝血酶复合物进行分子动力学模拟,分析了容易被修饰的水蛭素赖氨酸残基的位点.结果表明,在液相修饰的时候,水蛭素在水溶液中可被修饰的赖氨酸残基除Lys47外,都容易被修饰.而在固相修饰的时候,水蛭素仅Lys35和Lys27容易被修饰. Hirudin, a remarkably stable molecule with blood anticoagulant activity, is the most potent thrombin inhibitor in nature. But the short half life in blood plasma limits the application of hirudin in medical care. PEGylation is widely used to prolong the half life of proteins and peptides in plasma. However, the potential PEGylation sites of hirudin are numerous and it is difficult to confirm the actual PEGylation sites. In this paper, based on our experiment results of PEGylated hirudin in solution phase PEGylation and on-column PEGylation, hirudin and hirudin/thrombin complex had been simulated using molecular dynamics to predict the Lys PEGylation sites of hirudin. The results show that during the liquid-phase PEGylation, lysine residues are easy to be PEGylated except for Lys47, while during the solid-phase PEGylation, only Lys35 and Lys27 are easy to be PEGylated. And the PEGylation product can be stable when Lys35 is chosen to be the PEGylation site.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2009年第7期1410-1416,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20176005)资助
关键词 水蛭素 分子动力学模拟 聚乙二醇(PEG)修饰 溶液可及表面积 Hirudin Molecular dynamics simulation PEGylation Solvent accessible surface
  • 相关文献

参考文献1

  • 1Erik Lindahl,Berk Hess,David van der Spoel. GROMACS 3.0: a package for molecular simulation and trajectory analysis[J] 2001,Journal of Molecular Modeling(8):306~317

同被引文献28

  • 1付正明,王洪权,丁建新,窦媛媛.蛋白质多肽药物聚乙二醇定点修饰的研究进展[J].军事医学科学院院刊,2007,31(2):178-182. 被引量:5
  • 2Krantz S.B.,Jacobson L.O..Erythropoietin and the Regulation of Erythropoiesis[M] ,Chicago and London,University of Chicago Press,1970:5-30.
  • 3Winearls C.G.,Oliver D.O.,Pippard M.J.,Reid C.,Downing M.R.,Cotes P.M..The Lancet[J] ,1986,328(8517):1175-1178.
  • 4Lai P.H.,Everett R.,Wang F.F.,Arakawa T.,Goldwasser E..J.Biol.Chem.[J] ,1986,261(7):3116-3121.
  • 5Imai N.,Kawamura A.,Higuchi M.,Oh-eda M.,Orita T.,Kawaguchi T.,Ochi N..J.Biochem.[J] ,1990,107(3):352-359.
  • 6Sasaki H.,Bothner B.,Dell A.,Fukuda M..J.Biol.Chem.[J] ,1987,262(25):12059-12076.
  • 7Takeuchi M.,Takasaki S.,Miyazaki H.,Kato T.,Hoshi S.,Kochibe N.,Kobata A..J.Biol.Chem.[J] ,1988,263(8):3657-3663.
  • 8Davis J.M.,Arakawa T.,Strickland T.W.,Yphantis D.A..Biochem.[J] ,1987,26(9):2633-2638.
  • 9Macdougall I.C.,Eckardt K.U..The Lancet[J] ,2006,368:947-953.
  • 10Wasley L.C.,Timony G.,Murtha P.,Stoudemire J.,Dorner A.J.,Caro J.,Krieger M.,Kaufman R.J..Blood[J] ,1991,77(12):2624-2632.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部