期刊文献+

基于语义上下文分析的因特网人物信息挖掘 被引量:1

Internet person information mining based on semantic contexts analysis
下载PDF
导出
摘要 网络信息的爆炸式增长给人物信息的自动获取带来了巨大挑战.论文针对因特网上大量的人物信息,设计了一种基于语义上下文分析的人物信息挖掘体系框架,重点阐述了人物简历信息识别方法、基于隐马尔可夫模型(HMM,H idden M arkovModel)的命名实体识别方法和基于语义上下文分析的人物信息抽取算法.经实验表明:基于语义上下文分析的人物信息挖掘方法具有较高的信息抽取效率和精度. The explosive growth of web information had brought tremendous challenges to automatically obtaining person information. In regarding to the large number of person information on the internet, we designed a semantic contexts based person information mining system framework, focusing on the identification method of people resume information, the named entity recognition method based on HMM (Hidden Markov Model) and person information extraction algorithm based on the semantic context. The experiment showed that: the semantic contexts based person information mining method had higher efficiency and accuracy of information extraction.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2009年第4期33-37,共5页 Journal of Anhui University(Natural Science Edition)
关键词 人物信息挖掘 语义上下文 隐马尔可夫模型 命名实体识别 person information mining semantic contexts HMM (Hidden Markov Model) named entity recognition
  • 相关文献

参考文献3

二级参考文献25

  • 1凌妍妍,刘伟,王仲远,艾静,孟小峰.Deep Web数据集成中的实体识别方法[J].计算机研究与发展,2006,43(z3):46-53. 被引量:4
  • 2朱恒民,王宁生.一种改进的相似重复记录检测方法[J].控制与决策,2006,21(7):805-808. 被引量:12
  • 3王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:45
  • 4[1]A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A machine learning approach to building Domain-Specific Search Engines [A]. In Proceedings of IJCAI-99 [C]. 622-667.
  • 5[2]Ellien Riloff. Automatically Constructing a Dictionary for Information Extraction Task [A]. Proceeding for the Eleventh National Conference on Artificial Intelligence [C]. 1993. 811-816.
  • 6[3]E. Riloff , R. Jones. Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping [A]. Proceedings of the Sixteenth National Conference on Artificial Intelligence [C]. 1999. 811-816.
  • 7[4]S. Soderland. Learning information extraction rules for semi-structured and free text [J]. Machine Learning, 1999, 1-44.
  • 8[5]Kushmerick, N. Wrapper induction: efficiency and Expressiveness [J]. Artificial Intelligence,2000, Vol. 118, pp. 15--68.
  • 9[6]Leek,T. R. Information Extraction Using Hidden Markov Models [D]. Master's thesis, UC san Diego,1997.
  • 10[7]Kristie Seymore, Andrew McCallum, Ronal Rosenfel. Learning Hidden Markov Model Structure for Information Extract [A]. AAAI' 99 Workshop on Machine Learning for Information Extraction [C]. 1999. 37-42.

共引文献70

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部