期刊文献+

基于正交投影宽度谱的带状目标检测

Detection of ribbon objects based on the cross-projection width spectrum
下载PDF
导出
摘要 针对带状目标在行列上具有规则的几何特性,提出了一种基于正交投影宽度谱的带状目标检测方法,将边缘映射图在笛卡儿正交方向上投影,建立边缘点对的投影宽度谱。采用D-S证据理论融合边缘点对的亮度、梯度方向、亮度方差和宽度特征,抑制背景边缘点对的干扰,使带状目标的宽度谱呈现为突峰。为消除噪声点对的影响,利用距离约束的序贯最小二乘拟合方法定位边缘映射图中的带状目标。实验结果表明:该算法识别精度高、实时性好,具有很好的鲁棒性。 In accordance with inerratic geometric characteristic of ribbon objects in row and column direction, a method to detect ribbon objects in image based on the cross-projection width spectrum (CPWS)was presented. Firstly, the original image including ribbon objects was transformed into edgemapped image using edge detectors. Then, the edge-mapped image was projected in the direction of Cartesian coordinates to establish CPWS of edge point pair. Multi-characteristics including luminance, grads direction, variance of luminance and transcendental width of edge pair were fused to suppress clutter of background edge point pair based on D-S evidence theory, which made width spectrum of ribbon objects present prominence in CPWS. A sequential least square method with distance constraint was used to locate ribbon objects to reduce noise effect. Using airport images to test the performance of this algorithm, the experimental results show that the algorithm can detect ribbon objects in image correctly, has high recognizable precision, good real-time and strong robust.
出处 《红外与激光工程》 EI CSCD 北大核心 2009年第3期542-547,共6页 Infrared and Laser Engineering
基金 总装"十一五"预研课题支持(07X1Y2312)
关键词 带状目标 正交投影宽度谱 D—S证据理论 Ribbon object Cross-projection width spectrum D-S evidence theory
  • 相关文献

参考文献7

  • 1LIU Dehong,HE Lihan,CARIN L.Airport detection in large aerial optical imagery[C]//International Conference on Acoustics,Speech and Signal Processing,IEEE,2004,5:V761-V764.
  • 2HAN J W,EUO L,BAO Y S.A method of automatic finding airport runways in aerial images[C]//Proceedings of 6th International Conference on Signal Processing.Beijing,China:People's Posts and Telecommunications Publishing House,2002:731-734.
  • 3鲍复民,李爱国,覃征.合成孔径雷达图像中机场跑道的自动识别[J].西安交通大学学报,2004,38(12):1243-1246. 被引量:11
  • 4VENKATESWAR V,CHELLAPPA R.Extraction of straight lines in aerial images[J].IEEE Trans PAMI,1992,14 (11):1111-1114.
  • 5唐亮,谢维信,黄建军,黄敬雄.一种新的道路描述子:对称边缘方向直方图[J].电子学报,2005,33(1):7-11. 被引量:6
  • 6倪维平,徐刚锋,李飚,王平.基于正交投影特性的带状目标检测[J].红外与激光工程,2007,36(3):407-411. 被引量:4
  • 7CANNY J.A computational approach to edge detection[J].IEEE Trans PAMI,1986,8(6):187-217.

二级参考文献21

  • 1鲍复民,李爱国,覃征.合成孔径雷达图像中机场跑道的自动识别[J].西安交通大学学报,2004,38(12):1243-1246. 被引量:11
  • 2C Fuchs, E Gulch, W Forstner. OEEPE Survey on 3D-City Models[Z]. Frankfurt: OEEPE Official Publication, Bundesamt fur Kartographie und Geodgsie. 1998,(35) :9 - 123.
  • 3F Tupin, H Maltre,etc. Detection of Linear Features in SAR Images:Application to Road Network Extraction[J].IEEE Trans On Geoscience and Remote Sensing, 1998,36(2) :434 - 453.
  • 4J Trinder, Y Wang. Knowledge-Based Road lnterpretation in Aerial Images[A]. International Archives of Photogrammetry and Remote Sensing[C]. stuttgart, germany:CITC. 1998, 32(4), part 1:635 -640.
  • 5S Hinz, A Baumgartner. Automatic Extraction of Urban Road Networks from Multi-View Aerial Imagely[J]. ISPRS Journal of Photogrammetry and Remote Sensing. Feb. 2003,58 (1 - 2) :83 - 98.
  • 6F Mahmoudi, J Shanbehzadeh, et a. Image Retrieval Based on Shape Similarity by Edge Orientation Autocorrelogram [J]. Pattern Recognition,2003,36:1725 - 1736.
  • 7A K Jain, A Vailaya. Image Retrieval Using Color and Shape [J].Pattern Recognition, 1996,29(8) : 1233 - 1244.
  • 8M J Swain, D H Ballard. Color Indexing [J]. International Journal of Computer Vision, 1991,7(1):11 - 32.
  • 9J C Bezdek. Pattern recognition with fuzzy objective function algorithms[M]. New York, Plenum Press, 1981.
  • 10Han J W, Euo L, Bao Y S. A method of automatic finding airport runways in aerial images [A]. Proc of 6th International Conference on Signal Processing [C]. Beijing, China: People's Posts and Telecommunications Publishing House, 2002. 731-734.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部