期刊文献+

Positive Solutions of Singular Fourth Order Four Point Boundary Value Problems with p-Laplacian Operator

带p-Laplacian的四阶四点奇异边值问题的正解(英文)
下载PDF
导出
摘要 In this paper,we consider the existence of positive solutions for the singular fourth-order four point boundary value problem with p-Laplacian operator.By using the fixed point theorem of cone expansion and compression,the existence of multiple positive solutions is ob-tained. In this paper, we consider the existence of positive solutions for the singular fourthorder four point boundary value problem with p-Laplacian operator. By using the fixed point theorem of cone expansion and compression, the existence of multiple positive solutions is obtained.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第4期671-681,共11页 数学研究与评论(英文版)
基金 the National Natural Science Foundation of China (No.10671181)
关键词 P-LAPLACIAN singular boundary value problem positive solution cone Laplacian算子 四点边值问题 正解的存在性 奇异 四阶 不动点定理 多重正解
  • 相关文献

参考文献7

  • 1GUPTA C P. Existence and uniqueness theorems for the bending of an elastic beam equation [J]. Appl. Anal., 1988, 26(4): 289-304.
  • 2GUPTA C P. Existence and uniqueness results for the bending of an elastic beam equation at resonance [J]. J. Math. Anal. Appl., 1988, 135(1): 208-225.
  • 3LIU Bing. Positive solutions of fourth-order two point boundary value problems [J]. Appl. Math. Comput., 2004, 148(2): 407-420.
  • 4LIU Yansheng. Multiple positive solutions of nonlinear singular boundary value problem for fourth-order equations [J]. Appl. Math. Lett., 2004, 17(7): 747-757.
  • 5WEI Zhongli. A class of fourth order singular boundary value problems [J]. Appl. Math. Comput., 2004, 153(3): 865-884.
  • 6ZHANG Xinguang, LIU Lishan. Positive solutions of fourth-order four-point boundary value problems with p-Laplacian operator [J]. J. Math. Anal. Appl., 2007, 336(2): 1414-1423.
  • 7GUO Dajun. Nonlinear Functional Analysis [M]. Jinan: Shandong Sci Tech Publishing, 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部