摘要
基于微分进化(DE)的多目标进化算法(MOEA)在求解过程中存在着退化现象,导致算法的收敛性无法保证,同时也降低了求解的效率。针对这一问题,分析了算法中存在的两种退化现象,提出了针对两种退化现象相应的解决办法,最后给出了一种新的基于DE的MOEA。新算法克服了已有算法中存在的退化现象,保证了算法的收敛性和解的多样性,有效地提高了算法的效率,通过数值实验验证了新算法的可行性和有效性。
It was found that there exist deteriorations in Optimization Problems (MOP) base on Differential Evolution he process of sol (DE). The deteri the convergence of the multi-objective optimization algorithm is no 1 reduces the efficiency of the solution. To overcome this problem, two optimization algorithm were analyzed, and corresponding methods to were proposed. A new Multi-objective Optimization Evolution Algo which guarantees the convergence significantly improved. Numerical e ving Multi-objective oration onger guaranteed, leads to that and it also deterioration phenomena in the resolve the two deteriorations rithm (MOEA) is proposed, and the diversity. The efficiency xperiments validate the effectiveness o of the new algorithm f the new algorithm.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2009年第4期1041-1046,共6页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金项目(60673099
60873146)
吉林大学'985'工程项目
'863'国家高技术研究发展计划计划项目(2007AA04Z114
2009AA02Z307)
'符号计算与知识工程'教育部重点实验室项目
吉林省科技发展计划项目(20080168)
吉林大学'985工程'研究生创新基金项目(20080236)
关键词
人工智能
微分进化
多目标优化问题
退化现象
多目标进化算法
artificial intelligence
differential evolution
multi-objective optimization problems
deterioration
multi-objective evolutionary algorithm