期刊文献+

关于fann-内射模 被引量:5

On Fann-injective Modules
下载PDF
导出
摘要 讨论了fann-内射模的等价刻画和基本性质,证明了i∈ΛMi是fann-内射左R-模当且仅当每一Mi是fann-内射左R-模;若环R的每个有限生成闭左理想都是投射左R-模,则fann-内射左R-模的商模是fann-内射左R-模.同时讨论了一类特殊的fann-内射模——fann-自内射环的等价刻画及特性,证明了在左fann-自内射环里若左零化子理想l(I)是有限生成的,则Rδ/I是满射.最后讨论了fann-自内射环的零化子条件以及理想的自反性,证明了左fann-自内射环的有限生成理想l(I)是自反模. In this paper, the equivalent characterizations and properties of fann-injective module are studied. Especially it is proved that i∈ Mi is a fann-injective module if and only if for each i ∈A ,Mi is a fann-injective module ; if every finitely generated closed left ideal is a projective left R-module, the quotient module of the fann-injective left R-module is a fann-injective left R-module. At the same time, the equivalent characterizations and properties of the fann-injective ring are also discussed. It is brought out that if the left annihilator l(I) is finitely generated in the left fann-injective rings, the δR/1 is surjective. Finally the annihilator conditions and the reflexive properties of the ideals are studied in fann-injective ring. For example, every finitely generated ideal l(1) of the fann-injective ring is a reflexive module.
作者 徐龙玉 宋晖
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期443-446,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10776028)资助项目
关键词 内射模 fann-内射模 fann-自内射环 自反模 Injective modules fann-injective modules fann-injective rings Reflexive modules
  • 相关文献

参考文献7

二级参考文献63

共引文献34

同被引文献44

  • 1李珊珊,汪明义.关于P-平坦模[J].广西师范大学学报(自然科学版),2004,22(4):36-40. 被引量:14
  • 2余柏林,汪明义.Π-凝聚环的推广[J].四川师范大学学报(自然科学版),2005,28(3):278-281. 被引量:9
  • 3赵国,汪明义.关于极大内射性的注记(英文)[J].四川大学学报(自然科学版),2005,42(5):859-866. 被引量:9
  • 4徐龙玉,汪明义.关于零化子凝聚环[J].四川师范大学学报(自然科学版),2006,29(2):161-165. 被引量:10
  • 5Nicholson W K,Yousif M F.Principally injective rings[J].J Algebra,1995,174:77-93.
  • 6Xue W M.A note on perfect self-injective rings[J].Commum Algbra,1996,24:749-755.
  • 7Wang Ming-yi,Zhao Guo.On maximal injectivity[J].Acta Mathematical Sinica,2005,21(1):1451-1458.
  • 8Kaplansky I.Commutative Rings[M].Chicago:Univ Chicago Press,1974.
  • 9Rotman J J.An Introduction to Homological Algebra[M].2nd.New York:Springer-Verlag,1988.
  • 10Anderson F W,Fuller K R.Rings and Categories of Module[M].New York:Springer-Verlag,1992.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部