期刊文献+

侧伸式搅拌槽固液悬浮性能 被引量:11

Suspension of Solid Particles by Side-entering Agitators
下载PDF
导出
摘要 采用φ2m×4.2m侧伸式搅拌槽,研究了搅拌桨安装位置、通气速率、固体颗粒浓度和液位高度对侧伸式搅拌槽颗粒悬浮性能的影响.结果表明,搅拌轴水平偏转角对功率准数的影响很小,均布式为侧伸式搅拌槽搅拌桨的最佳排布方式,最佳偏转角βopt=10o;临界转速NJS最小值出现在搅拌桨伸入长度/搅拌桨直径比L/d=1.44处;降低搅拌桨安装高度h为0.75d左右,相比于传统的h=1.5d可减少约30%能耗;液位高度/搅拌槽直径比H/T<0.5时,NJS随H的升高而迅速增大.得到了通气量QV与NJS的关系式NJSG-NJS=1.46QV1.15和固相浓度ω对NJS影响的关系式NJS∝ω0.27. The influences of location of agitators, gas flow rate, solid particles content and liquid level on solid suspension of particles were studied in a tank of φ2m×4.2m with side-entering agitators. The results show that the angle of agitator axis deviation from radial direction has little influence on power number. The optimum arrangement of agitators is symmetrical and the optimum angle 10°. The minimum just-suspension speed appears at L/d (entering length of agitator to diameter of impeller)=1.44. Compared with the conventional h (installing height of agitator)=1.5d, 30% energy consumption can be saved when the agitator is installed at a height of h=0.75d. When the ratio of liquid level to diameter of vessel (H/T) is less than 0.5, NJS increases rapidly with incresing of H. The relationship between NJS and gas flow rate (QV) and the influence of solid content co on NJS have been obtained respectively, NJSG-NJS=1.46QV^1.15 and NJS∝ω^0.27.
出处 《过程工程学报》 CAS CSCD 北大核心 2009年第3期417-423,共7页 The Chinese Journal of Process Engineering
关键词 侧伸式搅拌 固液悬浮 临界悬浮转速 搅拌桨安装角 side-entering agitator solid-liquid suspension just-suspension speed installing angle of agitator
  • 相关文献

参考文献9

  • 1都荣礼,黄雄斌,王昕,陈智胜.侧伸式气液搅拌槽内的搅拌功率与传质性能[J].过程工程学报,2008,8(4):709-713. 被引量:12
  • 2Wesselingh J A.Mixing of Liquid in Cylindrical Storage Tanks with Side-entering Propellers[J].Chem.Eng.Sci..1975,30(8):973-981.
  • 3Henryk L.Mixing Time and Mixing Energy in an Agitated Vessel with Side-entering Propeller Agitator[J].Inzynieria Chcmiczna i Procesowa,200l,22(3):490-491.
  • 4Lacki H,Masiuk S.Efficiency of Heat Transfer in an Agitared Vessel with Side-entering Agitator[j].Inzynieria Chemiczna i Procesowa,1999,20(2):235-244.
  • 5Saeed S,Ein-Mozaffari F.Using Computational Fluid Dynamics Modeling and Ultrasonic Doppler Vclocimctry to Study pulpSuspension Mixing[j].Ind.Eng.Chem.Res.,2007,46(7):2l72-2179.
  • 6Janz E E,Fasano J,Myers K J.Different Solids Suspension Techniques in Flue Gas Dcsuifurization[A].2005 AIChE Annual Meeting and Fall Showcase,Conference Proceedings[C].American Institute of Chemical Engineers,2005.4067-4068.
  • 7杜俊琪,郑可嘉.厌氧移动床生物膜反应器侧伸式搅拌装置的试验研究[J].工业水处理,2007,27(3):58-61. 被引量:4
  • 8Chapman M,Nienow A W,Cooke M,et al.Particle-Gas-Liquid Mixing in Stirred Vessels:Part Ⅲ.Three-phase Mixing[J].Chem Eng.Res.Des.,1983,61:167-181.
  • 9徐世艾,韩晓丽,冯连芳,顾雪萍,王凯.气液固三相体系搅拌混合研究进展[J].化学工业与工程,2000,17(5):278-286. 被引量:5

二级参考文献36

  • 1郑广俭.采用CBY轴流桨搅拌槽内壁局部传热膜系数的研究[J].广西师范学院学报(自然科学版),2005,22(1):42-45. 被引量:2
  • 2杜俊琪,郑可嘉.厌氧移动床生物膜反应器侧伸式搅拌装置的试验研究[J].工业水处理,2007,27(3):58-61. 被引量:4
  • 3OldshueJY 王英琛 林猛流 施力田 译.流体混合技术[M].北京:化学工业出版社,1991..
  • 4欧舒JY.流体混合技术[M].北京:化学工业出版社,1991.27-46.
  • 5CHAPMANM,NIENOWAW,MIDDLETONJC.Particlesuspensioninagasspargedrushton-turbineagitatedvessel[J].TransIChemE,1981,59:134-137.
  • 6REWATKARB,RAGHAVARAOKSMS,JOSHIJB.Criticalimpellerspeedforsolidsuspensioninmechanicallyagitatedthree-phasereactors.1.Experimentalpart[J].IndEngChemRes,1991,30:1770-1784.
  • 7WIEDMANNA,STEIFFA,WEINSPACHPM.Suspensionbehavioroftwo-andthree-phasestirredreactors[J].GerChemEng,1985,8:321-335.
  • 8CHAPMANM,NIENOWAW,COOKEM,etal.Particle-gas-liquidmixinginstirredvessels,PartIII:threephasemixing[J].ChemEngResDes,1983,61:167-181.
  • 9FRIJLINKJJ,BAKKERA,SMITHJM.Suspensionofsolidparticleswithgassedimpellers[J].ChemEngSci,1990,45(7):1703-1718.
  • 10SATIOA,KAMIWANOM.Powerconsumption,gasdispersionandsolidsuspensioninthree-phasemixingvessels[A].Proc6thEuropeanConferenceonMixing[C].Italy:Pavia.1988.407-412.

共引文献16

同被引文献89

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部