期刊文献+

半正奇异Dirichlet边值问题二阶脉冲微分方程正解的存在性 被引量:2

Existence Theory for Positive Solutions to Singular Semipositone Dirichlet Boundary Value Problems for Second Order Impulsive Differential Equations
下载PDF
导出
摘要 应用锥上的不动点指数理论,给出脉冲奇异半正Dirichlet边值问题二阶脉冲微分方程正解存在性,改进了前人的结果。 Some new results of singular semipositione Direichlet boundary value problem for secend-order impulsive differential equations by using the fixed point theory in cones is presented. The results improve predecessor's results.
出处 《科学技术与工程》 2009年第14期4107-4110,共4页 Science Technology and Engineering
基金 国家自然基金(10871120) 山东省教育厅基金(J07WH08) 山东省自然科学基金(Y2008A06)资助
关键词 脉冲微分方程 奇异边值问题 不动点指数 正解 singular-problem fixed-piont index positive solution impulsive differential equotion
  • 相关文献

参考文献2

  • 1Zu Li,Jiang Daqing,O′Regan.Existence theroy for multiple solutions to semipositone Dirichlet boundary value problems with singular dependent nonlinearities for second-order impulsive differential equations.Applied Mathematics and Computation,2008;195:240-255
  • 2高云风,闫宝强.半正奇异边值问题二阶脉冲微分方程正解的存在性[J].应用泛函分析学报,2009,11(2):178-183. 被引量:3

二级参考文献5

  • 1Agarwal R P,O'Regan D.Existence theorem for single and multiple solutions to singular positone boundary value problems[J].J Differen Equat,2001,175:393-414.
  • 2Eloe P W,Henderson J.Singular nonlinear (h,n-k) conjugate boundary value problem[J].J Differen Equat,1997,133:136-151.
  • 3Gupta C P.Existence and uniqueness theorems for a bending of an elastic beam equations[J].Appl Anal,1988,26:289-304.
  • 4Li Zu,Jiang Daqing,Donal O'Regan.Existence theroy for multiple solutions tosemipositone Dirichlet boundary value problems with singular dependent nonlinearities for second-order impulsive differential equations[J].Applied Mathematics and Computation Volume,2008,195:240-255.
  • 5Xu Xi'an.Positive solutions for singular semi-positone boundary value problems[J].J Math Anal Appl,2002,273:480-491.

共引文献2

同被引文献16

  • 1李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 2余庆余.半序Banach空间中凝聚映射及其正不动点[J].兰州大学学报:自然科学版,1979,(2):1-5.
  • 3Laksllmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations [ M ]. Singapore : World Scientific, 1989 : 1 - 265.
  • 4Lin X N, Jiang D Q. Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equa- tions[J]. Math Anal Appl,2006,321:501 -514.
  • 5Lee E K, Lee Y H. Multiple positive solutions of singular two point boundary value problems for second order impulsive differenti- al equation[J]. Appl Math Comput,2004,158:745 -759.
  • 6Li Z, Jiang D Q, Donal O R. Existence theroy for multiple solutions tosemipositone Dirichlet boundary value problems with singular dependent nonlinearities for second- order impulsive differential equations [ J ]. Appl Math Comput ,2008,195:240 -255.
  • 7Heinz H P. On the behaviour of measure of noncompaetness with respect to differentiation and integration of rector - value func- tions[ J]. Nonlinear Anal, 1983,7:1351 - 1371.
  • 8李永祥,郭长辉.有序Banach空间非线性二阶边值问题的正解[J].兰州大学学报(自然科学版),2008,44(6):120-123. 被引量:5
  • 9高云风,闫宝强.半正奇异边值问题二阶脉冲微分方程正解的存在性[J].应用泛函分析学报,2009,11(2):178-183. 被引量:3
  • 10陈祥平,赵增勤.一类半正奇异二阶脉冲微分方程的正解[J].高校应用数学学报(A辑),2009,24(3):281-289. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部