期刊文献+

一种推广的含时Jaynes-Cummings模型中的几何相因子 被引量:1

Geometric phase factors in a generalized time-dependent Jaynes-Cummings model
下载PDF
导出
摘要 利用Lewis-Riesenfeld不变量理论,研究了一种推广的含时Jaynes-Cummings模型中的动力学相因子和几何相因子。发现在循环条件下,系统中的几何相因子与电磁场的频率、原子和场的耦合系数、原子能级差均无关。这表明几何相因子具有纯几何特征和拓扑特征,表示厄米线丛上的和乐。 By using the Lewis-Riesenfeld invariant theory, we study the dynamical and geometric phases factors in a generalized time-dependent Jaynes-Cummings model. It is found that the geometric phases factor in a cycle case have nothing to do with the frequency of the electromagnetic wave, the coupling strength between the atom and the light field, and the energy difference between two levels of the atom. It is apparent that the geometric phase factors have pure geometric and topological characteristics, which shows that they represent the holonomy in the Hermitian linear bundle.
出处 《北京信息科技大学学报(自然科学版)》 2009年第2期45-47,共3页 Journal of Beijing Information Science and Technology University
基金 北京市自然科学基金资助项目(1072010)
关键词 几何相因子 Jaynes—Cummings模型 Lewis—Riesenfeld不变量理论 geometric phase factor Jaynes-Cummings model Lewis-Riesenfeld invariant theory
  • 相关文献

同被引文献15

  • 1肖青,孙昌璞.高阶量子绝热近似方法和Berry相因子的性质[J].东北师大学报(自然科学版),1993,25(1):37-42. 被引量:1
  • 2王成,张力,孙昌璞.经典失谐与量子失谐[J].大学物理,1997,16(3):1-3. 被引量:3
  • 3Pancharatnam S.Generalized theory of interference and its applications[J].Proc Indian Acad Sci-Sec A,1956,44(06):398-417.
  • 4Berry M V.Quantal phase factors accompanying adiabatic changes[J].Proceedings of The Royal Society A:Mathematical,Physical and Engineering Sciences,1984,392:45-57.
  • 5Aharonov Y,Anandan J.Phase change during a cyclic quantum evolution[J].Phys Rev Lett,1987,58:1593-1596.
  • 6Samuel J,Bhandari R.General setting for Berry’s phase[J].Phys Rev Lett,1988,60:2339-2342.
  • 7Mukunda N,Simon R.Quantum kinematic approach to the geometric phase I general formalism[J].Annals of Physics,1993,228(02):205-268.
  • 8Pati A K.Geometric aspects of noncyclic quantum evolutions[J].Phys Rev A,1995,52(04):2576-2584.
  • 9Uhlmann A.Parallel transport and“quantum holonomy”along density operators[J].Rep Math Phys,1986,24(02):229-240.
  • 10Sjoqvist E.Geometric phases for mixed states in interferometry[J].Phys Rev Lett,2000,85:2845-2849.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部