期刊文献+

广域推荐:社会网络与协同过滤(英文) 被引量:1

Open Domain Recommendation:Social networks and collaborative filtering
下载PDF
导出
摘要 商务企业应用数据挖掘技术向潜在客户推荐产品。大多数推荐系统聚焦研究兴趣于特定的领域,如电影或书籍。使用用户相似度或产品相似度的推荐算法通常可以达到较好效果。然而,当面临其他领域问题时,推荐常变得非常困难,因为数据过于稀疏,难以仅基于购买历史发现用户或产品间的相似性。为解决此问题,提出使用社会网络数据,通过对历史的观察提高产品推荐有效性。利用人工协同过滤和基于社会网络的推荐算法的最新进展进行领域推荐工作。研究显示社会网络的应用对于产品推荐具有很强的指导作用,但是,高的推荐精度需以牺牲召回率为代价。数据的稀疏性意味着社会网络并不总是可用,在这种情况下提出一种解决方案,很好地利用了社会网络的有效信息。 Commercial enterprises employ data mining techniques to recommend products to their potential customers. Most of the prior research in recommender systems is usually focused on a specific domain such as movies or books, and recommendation algorithms using similarities between users and/or similarities between products usually perform reasonably well. However, when the domain isn't as specific, recommendation becomes much more difficult, because the data could be too sparse to find similar users or similar products based on purchasing history alone. To solve this problem, it proposes using social network data, along with rating history to enhance product recommendations. The state of art collaborative filtering algorithm and social net based recommendation algorithm are exploited for the task of open domain recommendation. It shows that when a social network can be applied, it is a strong indicator of user preference for product recommendations. However, the high precision is achieved at the cost of recall. Although the sparseness of the data may suggest that the social network is not always applicable, a solution to utilize the network in these cases is presented.
机构地区 加利福尼亚大学
出处 《计算机科学与探索》 CSCD 2009年第4期358-367,共10页 Journal of Frontiers of Computer Science and Technology
关键词 自动推荐系统 社会网络 协同过滤 recommender systems social network collaborative filtering
  • 相关文献

参考文献18

  • 1Konstan J A, Miller B N, Maltz D, et al. Group Lens: Applying collaborative filtering to Usenet news[J]. Communications of the ACM, 1997,40(3 ):77-87.
  • 2Delgado J, Ishii N. Memory-based weighted majority prediction for recommender systems[C]//ACM SIGIR'99 Workshop on Recommender Systems, 1999.
  • 3Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[R]. Microsoft Research, One Microsoft Way, Redmond, WA 98052, 1998.
  • 4Jin R, Chai J Y, Si L. An automatic weighting scheme for collaborative fihering[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'04. New York, NY, USA- ACM Press, 2004.337-344.
  • 5Zhang S, Wang W, Ford J, et al. Using singular value decomposition approximation for collaborative fihering[C]//Proceedings of the 7th IEEE International Conference on E-Commerce Technology, CEC'05. Washington, DC, USA: IEEE Computer Society, 2005:257-264.
  • 6Hofmann T. Latent semantic models for collaborative filtering[J]. ACM Trans lnf Syst, 2004,22( 1 ) :89-115.
  • 7Zhang Y, Koren J. Efficient bayesian hierarchical user modeling for recommendation systems[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007.
  • 8Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations [C]//Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-2002), Edmonton, Canada, 2002.
  • 9Kautz H, Selman B, Shah M. Referral web: Combining social networks and collaborative filtering[J]. Com ACM, 1997,40 ( 3 ) : 63-65.
  • 10McDonald D W. Recommending collaboration with social networks: A comparative evaluation[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2003.

同被引文献1

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部