摘要
文档的内容分析和连接分析是计算文档相似度的两种方法。连接分析能够发现文档之间的隐含关系,但是,由于文档之间的噪声的存在,这种方法很难得到精确的结果。为了解决这个问题,提出了一个新的算法—S-SimRank(Star-SimRank),有效地将文档的内容信息和连接信息结合在一起从而提高了文档相似度计算的准确性。S-Simrank算法在ACM数据集上无论是准确性和效率都比其他算法有了很大地提高。最后,给出了S-SimRank的收敛性的数学证明。
Content analysis and link analysis among documents are two common methods in recommending system. Compared with content analysis, link analysis can discover more implicit relationship between documents. At the same time, because of the noise, these methods can't gain precise result. To solve this problem, a new algorithm, S-SimRank (Star-SimRank), is proposed to effectively combine content analysis and link analysis to improve the accuracy of similarity calculation. The experimental results for the ACM data set show that S-SimRank outperforms other algorithms. In the end, the mathematic prove for the convergence of S-SimRank is given.
出处
《计算机科学与探索》
CSCD
2009年第4期378-391,共14页
Journal of Frontiers of Computer Science and Technology
基金
The National Natural Science Foundation of China under Grant No.70871068,70621061,70890083,60873017,60573092~~
关键词
连接分析
相似度计算
文本分析
linkage mining
similarity calculation
text mining