期刊文献+

S-SimRank:结合内容和链接信息的文档相似度计算方法(英文) 被引量:3

S-SimRank:Combining Content and Link Information to Cluster Papers Effectively and Efficiently
下载PDF
导出
摘要 文档的内容分析和连接分析是计算文档相似度的两种方法。连接分析能够发现文档之间的隐含关系,但是,由于文档之间的噪声的存在,这种方法很难得到精确的结果。为了解决这个问题,提出了一个新的算法—S-SimRank(Star-SimRank),有效地将文档的内容信息和连接信息结合在一起从而提高了文档相似度计算的准确性。S-Simrank算法在ACM数据集上无论是准确性和效率都比其他算法有了很大地提高。最后,给出了S-SimRank的收敛性的数学证明。 Content analysis and link analysis among documents are two common methods in recommending system. Compared with content analysis, link analysis can discover more implicit relationship between documents. At the same time, because of the noise, these methods can't gain precise result. To solve this problem, a new algorithm, S-SimRank (Star-SimRank), is proposed to effectively combine content analysis and link analysis to improve the accuracy of similarity calculation. The experimental results for the ACM data set show that S-SimRank outperforms other algorithms. In the end, the mathematic prove for the convergence of S-SimRank is given.
出处 《计算机科学与探索》 CSCD 2009年第4期378-391,共14页 Journal of Frontiers of Computer Science and Technology
基金 The National Natural Science Foundation of China under Grant No.70871068,70621061,70890083,60873017,60573092~~
关键词 连接分析 相似度计算 文本分析 linkage mining similarity calculation text mining
  • 相关文献

参考文献22

  • 1Sahon G, Wong A, Yang C S. A vector space model for information retrieval[J]. Communications of the ACM, 1975.
  • 2Jeh G, Widom J. SimRank: A measure of structural-context similarity[C]//SIGKDD, 2002.
  • 3Yin X, Han J, Yu P. Linkclus: Efficient clustering via heterogeneous semantic links[C]//VLDB, 2006.
  • 4Yin X, Han J, Yu P. Cross-relational clustering with user's guidance[C]//SIGKDD, 2005.
  • 5Small H. Co-citation in the scientific literature: A new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973.
  • 6Kessler M M. Bibliographic coupling between scientific papers[J]. American Documentation, 1963.
  • 7Amsler R. Applications of citation-based automatic classification, Technical Report 72-14[R]. Linguistic Research Center, 1972.
  • 8Xue G R, Zeng H J, Chen Z, et al. Similarity spreading: A new algorithm for similarity calculation of" interrelated objects[C]// Proc of the 13th WWW Conference, 2004.
  • 9Salton G. Associative document retrieval techniques using bibliographic information[J]. Journal of the ACM, 1963.
  • 10Wen J R, Nie J Y, Zhang H J. Clustering user queries of a search engine[C]//Proc of the lOth WWW Conference, 2001.

同被引文献21

  • 1陈焕文,张燮,罗明标.电喷雾解析电离质谱法对食品中苏丹红染料的快速检测[J].分析化学,2006,34(4):464-468. 被引量:53
  • 2郭瑞,张淑玲,汪小芬.人脸识别特征提取方法和相似度匹配方法研究[J].计算机工程,2006,32(11):225-227. 被引量:6
  • 3林峻,李介谷.离线中文签名鉴别的特征提取及预处理[J].上海交通大学学报,1996,30(9):40-45. 被引量:3
  • 4张宝华,王海水,许禄.DNA序列编码及相似度计算[J].高等学校化学学报,2006,27(12):2277-2280. 被引量:9
  • 5Jeh G, WidomJ. Simrank: A measure of structural snntext similarity [C] //Proc of the 8th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2002 : 538-543.
  • 6Dean J, Ghemawat S, et al. MapReduce; Simplified dala processing on large clusters [J]. Communicalions of the ACM, 200,1, 51(1): 107-113.
  • 7Shvachko K, Kuang H, et al. Tile hadoop distributed file system [C] //Proc of tile 2010 Iggg 26th Syrnp on Mass Storage Systems and Technologies. New York: ACM, 2010 : 1-10.
  • 8Cao L. Cho B, Tsai M, et al. Delta- Si Rank compututing on mapreduce[C] //Proc of the 1st Int Workshop on Big Data,Streams and Heterogeneous Source Mining: Algorithms Systems Programming Models and Applications. New York: ACM. 2012:28-25.
  • 9Zhang Yanfeng, Gao Qixin, et al. Accelerate large-scale iterative computation through asynchronous accumulative updates [C]//Proc of the 3rd Workshop on Scientific Cloud Computing. New York: ACM, 2012:13-22.
  • 10Zaharia M, Chowdhury M, Franklin M J, et al. Spark: Cluster computing with working sets [C] //Proc of the 2nd USENIX Conf on Hot Topics in Cloud Compuling. Berkeley: USENIX Association. 2010:10-10.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部