期刊文献+

基于排序的关联分类算法 被引量:6

Classification Mining Using Association Rules Based on Rule Ranking
下载PDF
导出
摘要 提出了一种基于排序的关联分类算法。利用基于规则的分类方法中择优方法偏爱高精度规则的思想和考虑尽可能多的规则,改进了CBA(Classification Based on Associations)只根据少数几条覆盖训练集的规则构造分类器的片面性。首先采用关联规则挖掘算法产生后件为类标号的关联规则,然后根据长度、置信度、支持度和提升度等对规则进行排序,并在排序时删除对分类结果没有影响的规则。排序后的规则加上一个默认分类便构成最终的分类器。选用20个UCI公共数据集的实验结果表明,提出的算法比CBA具有更高的平均分类精度。 A new associative classification algorithm based on rule ranking was proposed. The proposed method takes advantage of the optimal rule method preferring high quality rules. At the same time, it takes into consideration as many rules as possible,which can improve the bias of CBA that builds a classifier according to only several rules covering the training dataset. In the proposed algorithm, after the generation of association rules whose consequences are class labels, rules are ranked according to their length, confidence, support, lift and so on. Rules having no influence on the classification result are deleted during ranking. The set of the ranked rules with a default class constructs the final classifier. Finally,20 datasets selected from UCI ML Repository was used to evaluate the performance of the method. The experi- mental results show that our method has higher average classification accuracy in comparison with CBA.
出处 《计算机科学》 CSCD 北大核心 2009年第7期204-207,共4页 Computer Science
基金 国家自然科学基金项目(编号:60673124) 国家"863"计划项目(编号:2006AA01Z183) 教育部"新世纪优秀人才支持计划"项目(编号:NCET-07-0674)资助
关键词 分类 关联规则 排序 Classification, Association rules, Ranking
  • 相关文献

参考文献10

  • 1Li W,Han J,Pei J.CMAR:Accurate and Efficient ClassificationBased on Multiple Class-Association Rules[].Proceedings ofthe IEEE IntConfon Data Mining(ICDN ).2001
  • 2Yin X,Han J.CPAR:classification based on predictive associa-tion rules[].Proceedings of the Third SIAM InternationalConference on Data Mining(SDM’).2003
  • 3Liu B,Hsu W,Ma Y.Integrating Classification and AssociationRule Mining[].Proceedings of the Fourth ACM SIGKDDUbtebatuibak Conference on Knowledge Discovery and DataMining.1998
  • 4Thabtah F,Cowling P,Peng Y.MCAR:multi-class classificationbased on association rule[].Proceedings of the Third ACS/IEEE International Conference on Computer Systems and Appli-cations.2005
  • 5Duda RO,Hart PE.Pattern Classification and Scene Analysis[]..1973
  • 6Quinlan,J. R. C4.5: Programs for machine learning . 1993
  • 7Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases.In: Proceedings of the ACM SIGMOD Conference on Management of Data[].Washington D C.1993
  • 8Han J,Jian P,Yiwen Y.Mining frequent patterns without candidate generation.In Proceedings of the 2000 ACM SIGMOD International Conference Management of Data[].Dallas.2000
  • 9Meretakis, D,Wuthrich, B.Extending na (?)ve Bayes classifiers using long itemsets[].The th ACM SIGKDD Int‘l Conf on Knowledge Discovery and Data Mining.1999
  • 10Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weak .

同被引文献41

  • 1张丽娟,李舟军.分类方法的新发展:研究综述[J].计算机科学,2006,33(10):11-15. 被引量:20
  • 2张坤,朱扬勇.无重复投影数据库扫描的序列模式挖掘算法[J].计算机研究与发展,2007,44(1):126-132. 被引量:17
  • 3Fadi T, Peter C,Peng Y.MCAR:Multi-class classification basedon association rule[J].IEEE Intemational Conference on Com-puter Systems and Applications,2005,12(4): 127-133.
  • 4Chen G,Liu H.A new approach to classification based on associa-tion rule mining [R]. Decision Support Systems 42,2006:674-689.
  • 5Thabtah F, Cowling P, Peng Y.A new multi-class, multi-label as-sociative classification approach [C]. Brighton, UK:4th Intema-tional Conference on Data Mining(IVFM' 04),2004.
  • 6Thabtah F A,Cowling P, Peng Y H.MMAC:A new multi-class,multi-label associative classification approach [C]. Proceedingsof the Fourth IEEE International Conference on Data Mining,2007:217-224.
  • 7Asuncion A, Newman D. UCI machine learning repository[EB/OL] .http://www.ics.uci.edu/mlearn/MLRepository.html,2007.
  • 8PANGNING T,MICHAEL S,著.数据挖掘导论[M].范明、范宏建,译.北京:人民邮电出版社,2006:5.
  • 9DELANY S J,BUCKLEY M,GREENE D.SMS spam filtering:methods and data[J].Expert Systems with Applications,2012,39(10):9899-9908.
  • 10ALI K,MANGANARIS S,SRIKANT R.Partial classification using association rules[C]∥The 3th International Conference on Knowledge Discovery and Data Mining.Colifornia:American Association for Artificial Intelligence,1997:115-118.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部