摘要
This paper proposed a novel model-based feature representation method to characterize human walking properties for individual recognition by gait. First, a new spatial point reconstruction approach is proposed to recover the coordinates of 3D points from 2D images by the related coordinate conversion factor (CCF). The images are captured by a monocular camera. Second, the human body is represented by a connected three-stick model. Then the parameters of the body model are recovered by the method of projective geometry using the related CCF. Finally, the gait feature composed of those parameters is defined, and it is proved by experiments that those features can partially avoid the influence of viewing angles between the optical axis of the camera and walking direction of the subject.
This paper proposed a novel model-based feature representation method to characterize human walking properties for individual recognition by gait. First, a new spatial point reconstruction approach is proposed to recover the coordinates of 3D points from 2D images by the related coordinate conversion factor (CCF). The images are captured by a monocular camera. Second, the human body is represented by a connected three-stick model. Then the parameters of the body model are recovered by the method of projective geometry using the related CCF. Finally, the gait feature composed of those parameters is defined, and it is proved by experiments that those features can partially avoid the influence of viewing angles between the optical axis of the camera and walking direction of the subject.
基金
the National Natural Science Foundation of China (No. 60675024)