期刊文献+

一类具有收获率和比率的时滞阶段结构的扩散捕食系统的多重正周期解 被引量:4

Multiple Periodic Solution for a Delayed Stage-structure Predator-prey Systems with Ratio-dependence and Harvesting Rate and Diffusion
下载PDF
导出
摘要 近年来,对具有阶段结构的捕食系统周期解存在性问题已有广泛的研究。然而,对具有收获率和比率的时滞阶段结构的扩散捕食系统周期解存在性问题,还未见相关文献发表。因此,本文利用重合度理论中的延拓定理,通过一些分析技巧,获得了一类具有收获率和比率的时滞阶段结构的扩散捕食系统至少存在四个正周期解的一组易于验证的充分条件。 In recent years, the problem of the existence of periodic solutions for stage-structure predator-prey system has been extensively studied. However, so far as the author knows, nobody studies the existence of periodic solutions for a delayed stage-structure predator-prey system with ratio-dependence and harvesting rate and diffusion. In this paper, by developing some technique of analysis and using continuation theorem based on coincidence degree, a set of easily verifiable sufficient conditions are derived for a delayed stage-structure predator-prey system with ratio-dependence and harvesting rate and diffusion, which has at least four positive periodic solutions.
作者 秦发金
出处 《工程数学学报》 CSCD 北大核心 2009年第4期671-679,共9页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10671133)
关键词 比率 收获率 扩散 阶段结构捕食系统 正周期解 重合度 ratio-dependence harvesting rate diffusion stage-structure predator-prey system positive periodic solutions coincidence degree
  • 相关文献

参考文献3

二级参考文献15

  • 1[4]Chen Y. Multiple periodic solutions of delayed predator-prey systems with type Ⅳ functional responses. Nonlinear Analysis: Real World Applications, 2004;5:45-53
  • 2[1]Brauer F, Soudack A C. On constant effort harvesting and stocking in a class of predator-prey systems. J Theor Biol, 1982;95:247-252
  • 3[2]Xiao D, Ruan S. Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Institute Communications, 1999; 21: 493-506
  • 4[3]Gaines R E, Mawhin J. Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag,1977
  • 5Aiello W G,Freedman H I.A time-delay model of single-species growth with stage structure[J].Mathematical Biosciences,1990,101:139-153
  • 6Freedman H I,Wu J.Persistence and global asymptotical stability of single species dispersal model with stage structure[J].Quarterly Applied Mathematic,1991,49:351-371
  • 7Aiello W G,Freedman H I,Wu J.Analysis of a model representing stage-structured population growth with state-dependent time delay[J].SIAM Journal of Applied Mathematic,1992,52(3):855-869
  • 8Song X,Cai L,Neumann U.Ratio-dependent predator-prey system with stage structure for prey[J].Discrete and Continuous Dynamical System-Series B,2004,4(3):749-760
  • 9Wang W,Mulone G,Sulem F,salone V.Permanence and stability of a stability of a stage-structured predator-prey model[J].Journal of Mathematical Analysis and Applications,2001,262:499-528
  • 10Song X,Chen L.Optimal harvesting and stability for a predator-prey system with stage structure[J].Acta Mathematical Application Sinica,2002,18(3):307-314

共引文献18

同被引文献28

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部